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Numerical Analysis Unit-0: Introduction

Unit-0: Introduction

Syllabus
Introduction to Numerical Analysis
Part-I: Basic Tools

Unit-1: Error Analysis
e Measuring Errors
e Sources of Error
e Consistency, Order, Smoothness and Convergence

Unit-2: Roots of equations (Nonlinear Equations)
e Bisection Method
e False-Position Method (Optional)
e Newton-Raphson Method

Secant Method (Optional)

Unit-3: Simultaneous Linear algebraic Equations
e Direct Methods
- Review of Determinants and Matrices
- Cramer’s Rule
- Gauss-Elimination method (simple and partial pivoting methods)
- Gauss-Jordan Method
- Matrix Inversion method

e [Indirect (Iterative) Method

- Jacobi Method
- Gauss-Seidel Method

- Successive Over-Relaxation Method

Unit-4: Numerical Differentiation and Integration
- Numerical differentiation using difference method

- Numerical Integration, Trapezoid and Simpson’s Rules

- Extrapolation of Errors

Unit-5: Interpolation and Curve Fitting
- Direct Fit Polynomial

- Least Squares Method
- Logarithmic regression (Optional)

- Exponential regression (Optional)
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Numerical Analysis Unit-0: Introduction

- Linear interpolation , Quadratic Interpolation
- Lagrange Interpolation (Optional)

- Newton Divided Difference Interpolation (Optional)

Part-1l: Numerical Solutions of Ordinary Differential Equations

Unit-6: Initial Value Problem
- Euler’'s Method

- Runge-Kutta 2nd
- Runge-Kutta 4th
- Higher Order Equations

Unit-7: Boundary Value Problem
- Equilibrium (Finite Difference) Method

Part-lll: Numerical Solutions of Partial Differential Equations

Unit-8: PDEs
- Elliptic Equations
- Parabolic Equations
- Hi-parabolic Equations
- Advanced Application (Case Studies based on each department interests).
References:

- Numerical Methods for Engineers, S. C. Chapra and R. P Canale, McGraw-Hill, 61 edition
2010.

- Numerical Methods for Engineers and Scientists by Joe D. Hoffman, 2" Edition.

- Lectures on Numerical Analysis by Dennis Deturck and Herbert S. Wilf.

- Numerical Analysis Using MATLAB® and Excel® by Steven T. Karris, 3" Edition.

- Numerical Methods in Engineering with MATLAB® by Jaan Kiusalaas.

- Engineering Analysis- Interactive Methods and Programs with FORTRAN, QuickBasic,
MATLAB, and Mathematica by Y. C. Pao.
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Assessment method:

30% course exam, 10% homework and self-initiative, 10% Lab, and 50% final exam.
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Numerical Analysis Unit-0: Introduction

Introduction:
Numerical calculations obviously involve the manipulation (i.e., addition, multiplication, etc.)
of numbers. Numbers can be integers (e.g., 4, 17, -23, etc.) fractions (e.g., 1/2, -2/3, etc.), or

an infinite string of digits (e.g., [1=3.1415926535...).

Wikipedia: ~Numerical Analysisis the study

of algorithms that use numerical approximation (as
opposed  to symbolic manipulations) for the
problems of mathematical analysis. It is the study of
numerical methods that attempt at finding
approximate solutions of problems rather than the
exact ones. Numerical analysis finds application in
all fields of engineering and the physical sciences,
and in the 21" century also the life and social
sciences, medicine, business and even the arts.
Current growth in computing power has enabled the

use of more complex numerical analysis, providing

detailed and realistic mathematical models in Babylonian clay tablet YBC 7289 (c. 1800~
science and engineering. Examples of numerical 1600 BC)  with  annotations.  The
.. . . . . approximation of the square root of 2is
analysis include: ordinary differential equations as : L
] ] s o ) four sexagesimal figures, which is about
found in celestial mechanics (predicting the motions six decimal figures. 1 + 24/60 + 51/602 +
of planets, stars and galaxies), numerical linear 10/603 = 1.41421296...

algebra in data analysis and stochastic differential
equations and Markov chains for simulating living
cells in medicine and biology.

Before modern computers, numerical methods often relied on hand interpolation formulas,
using data from large printed tables. Since the mid-20th century, computers calculate the
required functions instead, but many of the same formulas continue to be used in software
algorithms.

The numerical point of view goes back to the earliest mathematical writings. A tablet from
the Yale Babylonian Collection (YBC 7289), gives a sexagesimal numerical approximation of
the square root of 2, the length of the diagonal in a unit square.

Numerical analysis continues this long tradition: rather than giving exact symbolic answers
translated into digits and applicable only to real-world measurements, approximate solutions
within specified error bounds are used.
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Numerical Analysis Unit-0: Introduction

Example:
A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute velocity

prior to opening the chute. The drag coefficient is equal to 12.5 kg/s.

Analytical Solution:

F
F=ma = a=—
m

Where:

F = net force acting on the body (N, or kg m/s2),
m = mass of the object (kg),

a = acceleration (m/s’).

w_F

dt m

F=F,+F,

F, =mg (=9.81 m/s’)

Fy = —cv (c=dragging coefficient kg/s)

dv __ mg-cv
dat m

dv

c
I = g — — VU, this is a differential equation having the analytical solution:
m

c

v(t) = % [1— e_(ﬁ)t]

v(t) = %6:'1) [1 — e_(%)t] — 53.44(1 — ¢~018355)
b vwm/s L e Reel
0 0.00 B
2 16.42 wl
4 27.80 5 |
6 3568 3
8 41.14 20|
10 44.92 I
12 A7 .54
o 53.44 of “1 ‘ ; 1|2
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Numerical Analysis Unit-0: Introduction

Numerical Solution:

dv _ Av _ v(ti41)-v(E)
dt ~ At tig1—ti
Wi -
I
Ti | I
dv . Av d:}ldetsope :
— = 11im — |
dt At—0 At Av ;
I
I
. I
. - . Approximate slope |
M et g — iv(t) N — A vy ) —vln) I
liv1—t; m l ! ArT hw k|
: |
i I
| I
! |
IS

This equation can be rearranged to be:

v(ti) = v(t) + |9 — S v(t)] (tipr — )

New value = old value + slope x step size
This approach is formally called Euler’s method and will be discussed thoroughly in Part-II.

Hence:
I:t=0to2s t, s v, m/s
v=0+[9.81-2=(0)]|2 = 19.62m/s 0 0.00
681 2 19.67
2:t=2to4s 2 gg(@)é

12.5 .

v =19.62 + [9.81 — > (19.62)| 2 = 32.04 m/s ‘ e
10 48.02
And so on... 1 50.01

o = 1000000 53.44

Terminal velocity

[ Approximate, numetrical solution

40 —

v, mfs
I

Exact, analytical solution

20 —

(0] 4 8 12
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Numerical Analysis Unit-1: Error Analysis

Unit-1: Error Analysis

Introduction:
Numerical calculations obviously involve the manipulation (i.e., addition, multiplication, etc.)
of numbers. Numbers can be integers (e.g., 4, 17, -23, etc.) fractions (e.g., 1/2, -2/3, etc.), or

an infinite string of digits (e.g., [1=3.1415926535...). When dealing with numerical values and
numerical calculations, there are several concepts that must be considered:

Significant digits,
Precision and accuracy,
Errors,

Number representation.

AN~

Significant digits

The significant digits, or figures, in a number are the digits of the number which are known
to be correct. Engineering and scientific calculations generally begin with a set of data having
a known number of significant digits. When these numbers are processed through a numerical
algorithm, it is important to be able to estimate how many significant digits are present in the
final computes result.

Precision and Accuracy

Precision refers to how closely a number represents the number it is representing. Accuracy
refers to how closely a number agrees with the true value of the number it is representing.
Precision is governed by the number of digits being carried in the numerical calculations.
Accuracy is governed by the errors in a numerical calculation.

Increasing accuracy

| (@) (&)
% &(a)f// \ki(b)//
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Numerical Analysis Unit-1: Error Analysis

Errors
The accuracy of a numerical calculation is quantified by the error of the calculation. Several
types of error can occur in numerical calculations.

Errors in the parameters of the problem (assumed nonexistent).
Algebraic errors in the calculations (assumed nonexistent).
Iteration errors.

Approximation errors.

Roundoff errors.

Truncation errors.

S AN~

Iteration error is the error in an iterative method that approaches the exact solution of
an exact problem asymptotically. Iteration errors must decrease toward zero as the iterative
process progresses. The iteration error itself may be used to determine the successive
approximations to the exact solution. Iteration error can be reduced the limit of the computing
device. The errors in the solution of a system of linear algebraic equations by the successive
over-relaxation (SOR) is an example of this type of errors.

Approximation error is the difference between the exact solution of an exact problem
and the exact solution of an approximation of the exact problem. Approximation error can be
reduced only by choosing a more accurate approximation of the exact problem. The error in
the approximation of a function by a polynomial is an example of this type of errors. The error
in the solution of a differential equation where the exact derivatives are replaced by algebraic
difference approximations, which have truncation errors, is another example of this type of
error.

Roundoff error is the error caused by the finite word length employed in the
calculations. Roundoff error is more significant when small differences between large
numbers are calculated. Most computers have either 32 bit or 64-bit word length,
corresponding to approximately 7 or 13 significant decimal digits, respectively. Some
computers have extended precision capability, which increases the number of bits to 128. Care
must be exercised to ensure that enough significant digits are maintained in numerical
calculations so that Roundoff'is not significant.
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Numerical Analysis Unit-1: Error Analysis

For all error types, the relationship between the exact, or true, result and the approximation
can be formulated as

True value = approximation + error
E, = truevalue — approximation

where E, is used to designate the exact value of the error. The subscript t is included to
designate that this is the “true’ error.

] . true error
True fractional relative error = ———
true value
true error
&= ———— X 100%
true value

where E¢ designates the true percent relative error.

Example:
Suppose that you have the task of measuring the lengths of a bridge and a rivet and come up

with 9999 and 9 cm, respectively. If the true values are 10,000 and 10 cm, respectively,
compute (a) the true error and (b) the true percent relative error for each case.

Solution.
(a) The error for measuring the bridge is

E; = true value - approximation
E; = 10,000 — 9,999 =1cm
And for the rivet is:

E. =10 —9=1cm

(b) The percent relative error for the bridge is

gt — true error % 100%
true value
1
= X 0f, — . 0,
£ = Togoq X 100% = 0.01%

And for the rivet is:
£ = =X 100% = 10%.
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Numerical Analysis Unit-1: Error Analysis

However, in real-world applications, we will obviously not know the true answer a priori. For
these situations, an alternative is to normalize the error using the best available estimate of
the true value, that is, to the approximation itself, as in

approximate error
£, = - X 100%
approximate value

For iterative approach, the error is often estimated as the difference between previous and
current approximations. Thus, percent relative error is determined according to

current approximatin — previous approximation
Eq = - - X 100%
current approximatin

It is also convenient to relate these errors to the number of significant figures in the
approximation. It can be shown that if the following criterion is met, we can be assured that
the result is correct to at least n significant figures.

g, =(0.5x10%2™)%

If this relationship holds, our result is assumed to be within the prespecified acceptable
Level ¢,

Example:
For the following Maclaurin expansion of €%, calculate the error iteratively for x=0.5 to three

significant digits, knowing that eX0-> = 168721 .
x? x3 x"

X o] b e
¢ S NEY nl

Solution:

£, =(0.5x10>™)% = (0.5 x 10273)% = 0.05%

Taking the series one by one:

e*=1+x=1+05=15

true error 1.648721-1.5
& = —X%x100% = —— x100% = 9.029
t ™ truevalue % 1.648721 % %
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Numerical Analysis Unit-1: Error Analysis

g, = approximate error x 100% = % x 100% = 33.3%

approximate value

Because ¢, is not less than the required value of ;, we would continue the computation by
2

x
adding another term, BN and repeating the error calculations. The process is continued until

€4 , es. The entire computation can be summarized as

Terms Result g (%) £q (%)
| | 39.3
2 1.5 .07 33.3
3 1.625 1.44 /.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697217 0.00142 0.0158
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Numerical Analysis Unit-1: Error Analysis

Truncation Errors and the Taylor Series

Truncation errors are those that result from using an approximation in place of an exact
mathematical procedure. For example, the derivative of velocity of a falling parachutist
may be approximated by a finite-divided-difference equation of the form:

dv _Av _ v(tiy) —v(t)
dt ~ At tior — &

A truncation error was introduced into the numerical solution because the difference equation
only approximates the true value of the derivative

THE TAYLOR SERIES AND THE TAYLOR POLYNOMIAL

A power series in powers of x is a series of the form
. | _
Yax"=ay+ax+a®+--- . (0.1)
=0

A power series in powers of (x — x,) is given by

ia,,(x —x)" = ay + ay(x — xg) + ay(x — x)* + - | (0 2)

Within its radius of convergence, 7, any continuous function, f(x), can be represented
exactly by a power series. Thus,

@)= ga,u —xo)" _— )
is continuous for (x — r) < x < (xg + r).

A. Taylor Serles in One Independent Variable
If the coefficients, a,, in Eq. (0.3) are given by the rule:
1 ' l ' ‘
a9 =f(x). @, = 7/ ok @y = ot o), ... (0.4)
then, Bq..(0.3).becames the Taylor series of /(x) at x = x;. Thus,

= f (x) f(xo) + f "(xoXx — xo) + 7 f’(Xo)(x xo) +- 0 (0.5)
Eqmm(DS)mbewnnenm&lcsmplerappearﬁgfonn _ |
f(x)=fe+j°”Ax+§ﬁ'Ax2+-~+n—!;;,""m"+--- (0.6)
where f = f(x,), /™ = df™/dx", and Ax = (x — x,). Equation (0:6) can be written in the
compact form LD -

00 I

@ =5 -0y ~\ e
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Numerical Analysis Unit-1: Error Analysis

When xg = 0, the Taylor series is known as the Maclaurin series. In that case, Egs.
(0.5) and (0.7) become

£ =f )+ O +4 /" Op2 + - - L
n=0 ¢ |

It is, of course, impractical to evaluate an infinite Taylor series term by term, The
Taylor series can be written as the finite Taylor series, also known as the Taylor formula or
Taylor polynomial with remainder, as follows:

£ =1Ga)+ o) = ) + 5 £ Go)x =) 4+

1 (0.10)
+ ;'“,f(")(xo)(x - x)" + R
where the term R**! is the remainder term given by
RJI-H — ;f("ﬁ)(f)(x _xo)n-H _ (0.1 1)

(n+ 1)

where ¢ lies between x, and x. Equation (0.10) is quite useful in numerical analysis, where -
an approximation of f(x) is obtained by truncating the remainder term.

B. Taylor Series in Two independent Variables

Power series can also be written for functions of more than one independent variable. For a
function of two independent variables, f (x, ), the Taylor series of f(x, y) at (xo, yo) is given
by .

1) =ht g G-+ |
i (=207 + 2] =50 =30+ | 07 -

.(0-12)
Equation (0.12) can be written in the general form ) B
o | 3 3\" - '
165 = 5 (6= +-mp) S ©.13)
where the term (- - - )" is expanded by the binomial expansion and the resulting expms:on
operates on the function f(x, y) and is evaluated at (x,, y;).
The Taylor formula with remainder for a function of two independent variables is

“obtained by evaluating the derivatives in the (n + 1)st term at the point (£, n), where (f. )]
lies in the region between points (x,, y,) and (x, y).
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Example: Find Maclaurin for sin(x), cos(x), and €*?

Solution:

1 1 " 2 1 (n) n
f(x)=f(0)+ f (O)x+§f (0) G +ﬁf (0) x
f (X) =sin x f(0)=0
f'(x) =cosx f'(0) =1
f"(x) =—sin x f"(0)=0
f'"'(x) =—cosx f''(0)=-1
f @ (x) =sin x f®0)=0
f ®(x) = cos x f®0) =1

f(x):0+x+0—£x3+O+£x5 O SxTh
3! Sl 7!
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Numerical Analysis Unit-1: Error Analysis

1 ex
Example: Solve I—dX
172 X
Solution:
X 2 1 3 n
" =14+ X+—X"+—X +.rrrrrn. +—X
! 3! n!
1 _x
e 1
I—dx: Tl =X+ =X+ =X, dx
R X 2

1, 1 5, 1 . '
={InXx+Xx+ X"+ X° + X5 H
2x2! 3x 3! 4x 41 2

Point of
diminishing
returns

log error

log step size
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Numerical Analysis Unit-1: Error Analysis

Consistency, Order, Smoothness and Convergence

There are several important concepts which must be considered when developing finite difference
approximation of initial-value differential equations. they are (a) consistency, (b) order, (c) stability, and
(d) convergence.

- A FDE is consistent with an ODE if the difference between them (i.e., the truncation error) vanishes

as At — 0. In other words, the FDE approaches the ODE.

- The order of a FDE is the rate at which the global error decreases as the grid size approaches
zero.

- A FDE is stable if it produces a bounded solution for a stable ODE and is unstable if it produces
an unbounded solution for a stable ODE.

- A finite difference method is convergent if the numerical solution of the FDE (i.e., the numerical
values) approaches the exact solution of the ODE as At — 0
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Numerical Analysis

Unit-1: Error Analysis

MATLAB APPLICATIONS

function [v,ea,iter] = IterMeth(x,es,maxit)
% initialization e (x)

iter = 1;

sol = 1;

ea = 100;

% i1terative calculation

while (1)

solold = sol;

sol = sol+x™iter/factorial (iter);
iter = iter+l;

if sol~=0

ea=abs ((sol-solold)/sol)*100;

end

>> [val, ea, iter] = IterMeth(1,0.000001,100)

val= 2.7183

ea= 9.2162e-07

iter= 12
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Numerical Analysis

Unit-1: Error Analysis

function diffex (func,dfunc, x,n)

format long

dftrue=dfunc(x);

h=1;

H(1)=h;
D(1)=(func(x+h)-func(x-h))/(2*h);
E(1)=abs(dftrue-D(1));

fori=2:n

h=h/10;

H(i)=h;
D(i)=(func(x+h)-func(x-h))/(2*h);
E(i)=abs(dftrue-D(i));

end

>> ff=@(x) -0.1¥x"4-0.15*x"3-0.5*x"2-0.25*x+1.2;
>> df=@(x) -0.4*x"3-0.45*x"2-x-0.25;

>> diffex(ff,df,0.5,11)

step size finite difference true error
1.0000000000 -1.26250000000000
0.1000000000 -0.91600000000000
0.0100000000 -0.91253500000000
0.0010000000 -0.91250035000001
0.0001000000 -0.91250000349985
0.0000100000 -0.91250000003318
0.0000010000 -0.91250000000542
0.0000001000 -0.91249999945031
0.0000000100 -0.91250000333609
0.0000000010-0.91250001998944
0.0000000001 -0.91250007550059

0.3500000000000
0.0035000000000
0.0000350000000
0.0000003500000
0.0000000034998
0.0000000000332
0.0000000000054
0.0000000005497
0.0000000033361
0.0000000199894
0.0000000755006

Plot of Error Versus Step Size

10°

Error
-
o

(=2}
T

10-12
10710 108

10 104
Step Size
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Numerical Analysis Unit-2: Roots of Equations

Unit-2: Roots of Nonlinear Equations
Introduction:

To solve f(x) = ax? + bx + ¢ = 0 we usually us the quadratic formula (L5 & 58)

__ —btVb2-4ac

2a

X to find the roots of the function that will make the function f(x)=0

Although the quadratic formula is handy for solving 2" degree equations, there are many
other functions for which the root cannot be determined so easily. For these cases, different
numerical methods shall be provided as an efficient means to obtain the answer.

1- Closed (Bracketing) Methods

The Bisection Method:

Step 1: Choose lower x. and upper xy guesses for the root such that the function
changes sign over the interval. This can be checked by ensuring that f(x.)f(xu)
<0.

Step 2: An estimate of the rooft xg is determined by xp = XLty

2

Step 3: Make the following evaluations to determine in which subinterval the root
lies:

(a) If f(x.)f(xr) <O, the root lies in the lower subinterval. Therefore, set xy = xr and return
to step 2.

(b) If f(x)f(xr) >0, the root lies in the upper subinterval. Therefore, set x. =xgr and return
to step 2.

(c) If f(x.)f(xr) = O, the root equals xg; terminate the computation.
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Numerical Analysis Unit-2: Roots of Equations

Example:
Use the bisection method to determine the drag coefficient c needed for a parachutist of mass

m = 68.1 kg to have a velocity of 40 m/s after freefalling for timet = 10 s?
Note: The acceleration due to gravity is 9.81 m/s2.

Solution:

f(c) = 9.81(68.1) (1 — e_(atj.l)l()) — 40

(o}

or

668.06
c

(1 _ e—0.1468436) — 40

fle) =

The first step in bisection is to guess two values of the unknown (in the present problem, c)
that give values for f(c) with different signs. We can see that the function changes sign between
values of 12 and 16. Therefore, the initial estimate of the root xy lies at the midpoint of the
interval

_ 12416 _

xR - > 14 ({:'t = 53%)

F(12)f(14) = 6.114(1.611) =9.850 > 0 = x, = xz = 14

Repeat the step:
xp == =15 (e, = 1.3%)

F(14)f(15) = 1.611(—0.348) = —0.619 < 0 = x, = xz = 15

Repeat the step:
Xp = o= =145 (g, = 2.0%)

F(14)f(14.5) = 1.611(0.593) = 0.956 > 0 = x, = xz = 14.5

The method can be repeated until the result is accurate enough to satisfy your needs.
Note: the root of this equation is (c = 14.8011).
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Numerical Analysis Unit-2: Roots of Equations

In this case we need a termination criterion:

new old
XR —XR
new
XR

£, = 100%

Each time we calculate the approximate error (because we do not know the true error) and
stop the loop when the accuracy condition is satisfied.

15-14
For example: €, = | = | 100% = 6.667% Recall that the true error was only 1.3%!
Iteration Xy x, X, £q (%0) gy (%6)
| 12 16 14 5413
2 14 16 15 5667 1.344
3 14 15 14.5 3.448 20035
4 14.5 15 14.75 1.695 0.345
5 14.75 15 14.875 0.840 0.49¢
& 14.75 14.875 14.8125 0422 0.0/

A
10 —
Approximate
s
&
o
2
T 1.0 —
E
=
@ True/
o
a
0.1 —
| | | | | |
0 2 4 6

lterations
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Numerical Analysis Unit-2: Roots of Equations

2- Open Methods

The Newton-Raphson Method:

The Newton-Raphson method can be derived on the basis of this geometrical interpretation
(an alternative method based on the Taylor series).

The first derivative at x is equivalent to the slope
fl)t

) _ ) f(Xigq1)
f(xi) N Xi—Xi+1

f(x;)
the f(xi+1) = 0 as can be seen from the figure

Which can be rearranged to yield

0
f(xi)
Xig1 = X —
+1 l f(xl)
Example:
Use the Newton-Raphson method to estimate the root of f(x) = e~ — x, employing an
initial guess of x5 = 0 ?
Solution:
f X; £:(%)
fx)=—e™~1 0 0 100
| 0.5 00000000 11.8
Newton-Raphson. 2 0.566311003 0.147
3 0.567143165 0.0000220
—e(_xi)—xi 4 0567143290 < 107®
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Numerical Analysis Unit-2: Roots of Equations

Newton-Raphson Method for Systems of Non-linear Equations:

f‘l(xlsxzsf“ :xn) - 0
fE(x1=x2= :xn) — 0

frz(-xh %1 PR xn) = 0

For example:
x* +xy =10
w(x,y) =x +xy—10=10

d =
“ v(x,y) =y + 3x — 57 = 0

y + 3xy* = 57

the solution would be the values of x and y that make the functions u(x, y) and y(x, y) equal
to zero.

flae) = flx) + () — x) f(x)

B Six;)
fr(l'z')

X1 — Xy

For system of non-linear equations:

aui aui
Mipq = My + (X0 — Ix‘)a + (i1 — ¥

and

aUI'
Vg1 = vy + (X4 — Iz‘)g + (yie1 — ¥
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Numerical Analysis Unit-2: Roots of Equations

Just as for the single-equation version, the root estimate corresponds to the values of x and
v, where U; 1 and V;q equal zero leading to

o, Ju, du, Ju,
o it + Eyﬁl = —u; + X + )’ia
aUI' aUI' aUI' aUI'
axﬁl + a—%‘ﬂ = —uy + xia + J’ig

Consequently, algebraic manipulations (for example, Cramer’s rule) can be employed to
solve for

aUI‘ aui
Uy—— v/
ay oy
X =X —
a : aui aUI' aH,I' aUI'
dx dy dy odx
aui aUI'
v — My
ox ox
Yit1 = Vi

B aui aUI' aH,I' aUI'

dx dy dy dx

The denominator of each of these equations is formally referred to as the determinant of the
Jacobian of the system.

Example: Solve the following system of non-linear equations, Initiate the computation with
guesses of x = 1.5andy =3.57?

w(x,y) =x +xy— 10=10
vix,y) =y +3xy' — 57 =0

Solution:

First compute the partial derivatives and evaluate them at the initial guesses of x and y:

Jug dug

0 x4y =2(15) +35=65 —=x=15

ax dy

5 3

% = 3y2 = 3(3.5)% = 36.75 % =1+ 6xy =1+ 6(1.5)(3.5) = 32.5
X ¥
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Numerical Analysis Unit-2: Roots of Equations

Thus, the determinant of the Jacobian for the first iteration is

6.5(32.5) - 1.5(36.75) = 156.125

The values of the functions can be evaluated at the initial guesses as
1y = (1.5)° + 1.5(3.5) — 10 = —2.5
v = 3.5 + 3(1.5)(3.5)* — 57 = 1.625

These values can be substituted into the equation to give

B —2.5(32.5) — 1.625(1.5)
x=15 ETEET: = 2.03603

B 1.625(6.5) — (—2.5)(36.75)
y =35 156,125 = 2.84388

Thus, the results are converging to the true values of x = 2 and y = 3. The computation can
be repeated until an acceptable accuracy is obtained.
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Numerical Analysis Unit-3: Simultaneous Linear algebraic Equations

Unit-3: Simultaneous Linear algebraic Equations

DETERMINANTS

For every matrix of order n, i.e., for every nxn matrix A, the corresponding value of the
determinant function is denoted by either |A| or det A.

a, a, ... a,
a, a, ... a .
A=| & 2 s matrix A
a, 4a, ... a,
all a‘12 aln
a, a, .. a
A= o detA
anl anZ ann

The determinant |M| formed by the m2 elements common to any m rows and any m columns
of an nth-order determinant |A| is said to be an m"-order minor of |A|. The determinant of
order n — m formed by the array of elements which remains when the m rows and m columns
containing an m"-order minor |M| are deleted from |A| is called the complementary minor of

|M].

If the numbers of the rows and columns of |A| which contain an m"-order minor M) are,

respectively,

iiyyeeeniand o doreeens i

(_1)il+i2+ ...... Hig i+ +ip

then times the complementary minor of |M| is called the algebraic
complement and/or (cofactors) of |M|.

We shall denote the complementary minor of the element a; by the symbol M;; and its algebraic
complement (cofactor) by the symbol A;; ; thus

— (_1\i+]
A =DM which is for the first order

And for the second order complementary minor and its algebraic complement (cofactor) we
use

A =DM where i are the rows and k1 are the columns.
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Numerical Analysis Unit-3: Simultaneous Linear algebraic Equations

Example: In the fifth-order determinant,

the complementary minor of the element ay; is the fourth-order determinant formed by the
elements which remains when the fourth row and the third column are deleted from |A
namely,

)

8 8y VRN
8, a, 8y a;
a‘21 a22 a24 a25
M _ M 21 a22 a24 a25
43 — a31 a32 a34 a35 = 43
31 a32 a34 a35
a51 a52 a54 a‘55
a51 a'52 a54 a55

the cofactor A, ; of the element a,;is equal to this complementary minor times (~/)"”; that is,
A4,3 = (_1)4+3 M 43 = -M 43

83
a51

the third and fifth rows and the first and fourth of |A| is the third order determinant formed by
the elements which remain when these rows and columns are deleted from |A|:

Similarly, the complementary minor of the second-order minor ag,, = contained in

a, a; 1 A

a‘22 a‘23 a‘25 a12 a13 a15
Mgy =.. .. . . .| = Mgy,=@, a; ay

8, A s 8p 8y 8

The algebraic complement (cofactor) A;;,,0f the given second-order minor is equal to the

complementary minor M ,,times (-2)"""""7; that is,

3+5+1+4
A35,14 = (_1) o M35,l4 - A'35,14 = _M35,l4
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Numerical Analysis Unit-3: Simultaneous Linear algebraic Equations

DEFINITION 1: The determinant of a matrix with a single element is that
element. For every matrix A of order n>2,

Simplification for 2" and 3" order determinants:

For 2" order matrix:

A= |:all a12 j|
a21 a22

detA=a;,a,, —a,,a,

(+)

=a;dy —a,ay

For 3" order matrix:

A general third-order determinant can be expanded using the former equations:

a'll a12 a13

a22 a‘23 a'21 a23 a21 a22

Ay Ay Ap(=ay
dy; dzp Ay

+a;

32 33 31 33 31 32

=ay, [azz Ay — Ay a32]_ a, [3-21 Az — Ay, a-31]"' A [a21 Ay —ay aSl]
=8y Ay Ay + Ay Ay dy T A3 Ay Ay — g3 Ay Ay —dyy Ay 8y —Appay Agg

The expansion can also be obtained by diagonal multiplication, by repeating on the right the
first two columns of the determinate and then adding the signed products of the elements on
the various diagonals in the resulting array:
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Numerical Analysis Unit-3: Simultaneous Linear algebraic Equations

H - ®H

ay 8y 83 Ay 8,
aZl a‘22 a23 a‘21 a'22
Ay 8 83 8y 83

(G IR R O

PROPERTY 1: For every matrix A of order n, and for each i such that 1<i <n,

det A=Y>a, A,
k=1

and for each 1< j<n

A=>a, A,
k=1

Which means that we can use any row or column to evaluate the determinate and
of course any raw or column with a lot of zero element is preferred.

Example: Evaluate the forth-order determinant

1 2 3 4
4 3 2 1
|/34:0 1 2 3
1 6 4 -2

Solution: Using the third row

2 3 4 13 4 12 4 1 2 3
A=OB 2 1|-(-D}4 2 1|+(Q4 3 1|-3d4 3 2
6 4 -2 1 4 -2 16 -2 |16 4

|A| =0+75+180-105=150
we can obtain the same result easily by usin g the first column
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Numerical Analysis Unit-3: Simultaneous Linear algebraic Equations

PROPERTY 2: For every square matrix A, det A" =detA.

1 0 0]
Example: for the matrix A=|5 —2 O | show that detA” =detA.
9O 14 3

Solution: Expanding successive determinants by elements of their first rows, we find:

roo
det A=|5 -2 0= , 3‘:(1)(—2)(3):—6
9 14 3

Expanding successive determinants by elements of their first columns, we find.:

1 5 9
~2 14
det AT =0 -2 14=(1) A 3‘=(1)(—2)(3)=—6:detA
0 0 3

Both A and A", in the previous example, are triangular matrices and the determinant of either
matrix is equal to the product of its diagonal elements.

PROPERTY 3: If A is a triangular matrix of order n, then

detA=a,a,...a,, =detA=]]a;

i=1

that is to say the determinant of a triangular matrix is equal to the product of
its diagonal elements.

See the previous example.

PROPERTY 4: If a square matrix A has either a zero row or a zero column,
then:

det A=0
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Numerical Analysis Unit-3: Simultaneous Linear algebraic Equations

5 0 3
Example: Find |A| of A=|-6 0 6
4

Solution: Applying the expansion by elements of the second column, we find that
> 03 6 6 5 3 5 3
-6 0 6/=-(0 0 —-(0 =0
o, o 705
4 0 2

PROPERTY 5: If each element in one row or column of a determinant is
multiplied by a number c, the value of the determinant is multiplied by c too.

Example: Evaluate if the 2" row is factored by 2 and the 2" column is factored by 3?

3 9 5
4 6 0
-1 -3 2

Solution:
First, we evaluate the determinant and then multiply by (2%3):

3 9 53 9
2x3|4 6 04 6 =6(36+0-60+30-0-72)=6(-66)=-396
-1 -3 2-1 -3

Second, we multiply the determinants by the factors and solve:

3 9 95 |3 27 5
2x3|/4 6 0=/8 36 0
-1 -3 20 -1 -9 2

27 53 27
8 36 08 36=(216+0-360+180—-0—-432)=-396 we are done
-1 -9 2-1 -9
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Numerical Analysis Unit-3: Simultaneous Linear algebraic Equations

PROPERTY 6: If A=|v,...f, +g,....v is a square matrix, then
detA=det[vl ...... fi.... v J+[v1 ...... P an

What this property says is that, if each element in one column (raw) of a
determinant is expressed as a binomial, the determinant can be written as the
sum of two determinants. Specifically,

Example: Determine the number £such that

1 2 -3
-k 1+3k 3-k|=36
0 -6 5

Solution:

With —k regarded as the binomial 0-k, the elements of the second row of the given determinant
become binomial;: hence

1 2 -3/ 1 2 -3 |1 2 -3 1 2 -3
-k 1+3k 3-k|=0 1 3|+-k 3k —-k|=23+kl-1 3 -1=23+k
0 -6 5 0 -6 5 0 -6 5 0 -6 5

Which equals 36 if and only if k=13.

PROPERTY 7: If B is a matrix obtained by interchanging any two rows
(columns) of a square matrix A, det B = - det A.

PROPERTY 8: If one row (column) vector of a square matrix A is equal to
a number ¢ times some other row (column) vector, then |A| =0
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Example: Evaluate the determinant

2 -3 2
|A| =13 -2
-6 9 6
Solution:
2 -3 2
3 -2 5=0
-6 9 6

it is apparent that each element of the third row is equal to -3 times the corresponding element
of the first row,; hence, |A| = 0

PROPERTY 9: If a matrix B is obtained from a square matrix A by adding
to one row (column) vector of A a number c times a different row (column)
vector, then det B = det A.

Hint: this property is very useful especially with large determinants.

Example: Find the value of the determinant

3 1 -1 21
0 3 1 4 2
1 4 2 31
5 -1 -3 2 5
-1 1 2 3 2

Solution:

To introduce as many zeros as possible in some rows (columns):
1) Add the 3" column to the 2" and the 5"
2) Add twice the 3" column to the 4"
3) Add 3 times the 3" column to the I".

This gives the new but equal determinant:
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0O 0 -1 0 O
3 4 1 6 3
7 6 2 7 3
-4 -4 -3 -4 2
5 3 2 7 4

Expanding this in terms of the first row, according to property 1, we have:
det A=>"a, A,
k=1

A1j,k| = (_1)i+j+k+l Mij,kl

3 4 6

7 6 7 3
detA=0+0+ (-1 (-D)** +0+0

4 4 —4 2

5 3 7

Now to simplify the 4" order determinant too:

Add twice the last column to each of the first three; we obtain the equal determinant,

9 10 12 3
3 12 13 3
10 0 0 2
3 11 15 4

and expanding in terms of the 3 row,

9 10 12
—(2)(-)**13 12 13
3 11 15

We can now simplify this by further row or column manipulations, or, since it is of the 3"

order, we can expand it by the diagonal method, the result is -166.

PROPERTY 10: If A and B are matrices of the same order, then

(det A) (det B) = det (AB)

Example: For the matrices:

1 0 -3 -3 -2 12
A= 2 -5 4 B={4 1 -6
-2 3 -1 2 3 -10
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We verify directly that (det A)(detB) = det (AB)

Add 3 times the first column of det A to its 3" column, we have:

1 0 O 10
detA=|2 -5 10|=(-1)° 3 11=35—30=5
-2 3 -7

Add 2 times the 2" row to the 1" row, and -3 times 2" row to the 3" row, of det B, we find,

5 0 O 1 6
detB=| 4 1 —6:5‘0 8‘:5x8:40
-10 0 8

We next compute the matrix product AB from which we obtain:

-9 -11 42 -9 -11 42 35 -11 -46
det(AB)=|-18 3 14 |=4-18 3 14|=4/-30 3 38

16 4 -32 4 1 -8 0 1 0

35 -46
— 4 _13+2
@y 38‘
=det AxdetB

7 -23
:—(4><5><2)‘ 5 19‘:—40(133—138):200
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MATRICES

The fundamental quantity of linear algebra is the matrix. A matrix is an ordered rectangular
array of numbers of mathematical expressions. We shall use upper case letters to denote them.
The mxn matrix

a; Qp 3 . . . Ay
a‘21 a22 a23 a2 n
A=
a;
L aml am 2 am 3 amn a

has m rows and n columns. If m=n, the matrix is a square matrix, otherwise, A is rectangular.
For a square matrix, the diagonal from the top left corner to the bottom right corner is the
principal diagonal.

From the limitless number of possible matrices, certain one appears with sufficient regularity
that they are given special names.

Zero Matrix: sometimes called a null matrix, has all of its elements equal to zero.

Unit Matrix: the unit of identity matrix is a nXn matrix having 1's along the principal diagonal
and zero everywhere else.

Symmetric Matrix: a symmetric matrix is one where a; = aj; for all i and j.

Example: Examples of zero, ldentity, and symmetric matrices are

0 0O 10 3 2 4
Oo=|0 0 0O, 1 :(O 1), A=12 1 0

0 0O 4 0 5
respectively.

Diagonal Matrix: a diagonal matrix is a nxn matrix having values along the principal
diagonal and zero everywhere else.
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Upper Triangular Matrix: an upper triangular matrix is a nxn matrix having values along
the principal diagonal and the upper triangle. And zeros in
the lower triangle.

Lower Triangular Matrix: lower triangular matrix is a nxn matrix having values along the
principal diagonal and the lower triangle. And zeros in the
upper triangle.

Example: Examples of Diagonal, Upper Triangular, and Lower Triangular Matrices are

2 0 4
4 0 O 7 0 0
0 5 7
D=/0 -3 0|, U= , L=|2 -3 0
0 0 -1 2
0 0 1 1 10 1
00 0 3
respectively.

Definition 1: Two matrices A and B are equal if and only if a;; = bj; for all
possible i and j and they have the same dimensions.

Definition 2: For two matrices A and B with the same dimensions
(conformable for addition), the matrix C = A + B contains the elements ci; =
aij + bij. Similarly, C = A — B contains the elements cj; = aij - bi.

Because the order of addition does not matter, addition is cumulative: A + B =
B+ A.

Definition 3: considering a scalar constant k. The product kxA is formed by
multiplying every element of A by k. thus the matrix kA has elements equal
to kxaij.
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Matrix Multiplication:

We begin by requiring that the dimension of A be mxn while for B they are nXp. That is, the
number of columns in A must equal the number of rows in B. The matrices A and B are then
said to be conformable for multiplication. If this is true, then C = AXB will be a matrix mxp,
where its elements equal

n
szzzambw
k=1

The right side of the equation is referred to as an inner product of the i" row of A and the j"

column of B. The product AxA is usually written A’; the product AXAXA is usually written
A’: and so forth.

Example: If

A= and B=
2 -3 3 4
then
(D@ +@E)] (D) + 4)(4)]

) ([(2) 0+30)] [(2@+3) (4)]J
(11 14
-7 -8
Matrix multiplication is associative and distributive with respect to addition:

(kA) B=k (AB) = A (kB),
A (BC) = (4B) C,
(A+B) C= AC+BC
C (A+B) = CA+CB

On the other hand, matrix multiplication is not cumulative. In general, AB#BA.

Example: Does AB = BA if

10 11
A= and B= ?
oo ™ B

Because
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o o)l oo o

and
1 1)\/1 O 10
BA= =
oo o) o
AB = BA.

Matrix Transposition:

Another matrix operation is transposition. The transpose of a matrix A with dimensions mxn
is another matrix, written A", where we have interchanged the rows and columns from A.
Clearly, (A" = 4 as well as (A+B)" = A"+B" and (kA)" = kA" If A and B are conformable
for multiplication, then (AB)" = B" A". Note the reversal of order between the two sides

Example: Given A, find A"?

2 3 4 2 10 6
A=|10 5 1| = A" =|3 5
6 7 8 4 1

Matrix Inverse:

A matrix A is said to be non-singular or invertible if there exists a matrix B such that AB =
BA =I. This matrix B is the multiplicate inverse of A or simply the inverse of A, written A
An nxn matrix is singular if it does not have a multiplicative inverse.

From preliminary Algebra we know that the inverse of any quantity Q is % which is usually

denoted as Q.

,1_1
7
QxQ'=1

The same equation is applicable for square matrix A,

[A]la)=1
[at]= adi A where,

A

|Al isthe deter min ant of the matrix A
adj A isthe adjoint of the matrix A
adjA=[A ] where,

A, isthe algebric complementary (cofactor) of the element a;
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Example: Find A" if

1 2 4
A=|-1 0 3
3 1 -2
1 2
A=|-1 0 3| -2R+R =
3 1 -2
-5 0 8 8
A=1 0 3|=1x ()] 3‘:(—1)(—15+8)=7
3 1 -2
T
0 3 -1 3 -1 0
_11+1 _1\1+2 _1l+3
i A GV B B i
2 4 1 4 1 2
ad' A: _1 2+1 _1 2+2 _1 2+3
1 ()1_2‘ D 3_2‘ G
2 4 1 4 1 2
_1 3+1 _1 3+2 _1 3+3
) D _13‘ G I
-3 8 6
adjA=7 -14 -7
-1 5 2
dA 1 -3 8 6
Al:&:? 7 14 -7
AT s
Check

38 6][1 2 4
[AxAt]=2] 7 -14 -7|x|]-1 0 3
o1 s 2|3 1 -2

Il
o O -
o - O
= O O
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SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

Systems of linear algebraic equations can be expressed very compactly in matrix notation,
such as,

all a12 aln Xl bl
a, a a X b
A= 21 22 2n X = 2 b _ 2
anl an2 a'nn Xn bn

There are three so-called row operations that are useful when solving systems of linear
algebraic equations. They are:

1. Any row (equation) may be multiplied by a constant (a process known as scaling).

2. The order of the rows (equations) may be interchanged (a process known as pivoting).

3. Any row (equation) can be replaced by a weighted linear combination of that row
(equation) with any other row (equation) (a process known as elimination).

In the context of the solution of a system of linear algebraic equations, these three row
operations clearly do not change the solution.
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1. Direct Elimination Methods

Cramer's Rule

Although it is not an elimination method, Cramer's rule is a direct method for solving systems
of linear algebraic equations. Consider the system of linear algebraic equations, Ax = b,

which represents n equations. Cramer's rule states that the solution for x; (j=1,...... ,h) is given
by:
_ det(A)) "
= Gt () N :

where [A’] is nxn matrix obtained by replacing column j in matrix A by the column vector b.
For example, consider the system of two linear algebraic equations:

a; X +a;, X, = bl
Ay Xp +ay X, = bz

Applying Cramer's rule yields

bl a12 a11 bl
N bZ aZZ and X, = a'21 b2
1 1

a11 a12 all alZ

aZl aZZ aZl a'22

The determinants in the last equation can be evaluated by the diagonal method.

For systems containing more than three equations, the diagonal method does not work. In
such cases, the method of cofactors could be used. The number of multiplications and divisions
N required by the method of cofactors is N =(n-1)(n+1)!. For a relatively small system of
10 equations (i.e., n=10), N=360,000,000, which is an enormous number of calculations. For
n=100, N=10"", which is obviously ridiculous. The preferred method for evaluating
determinant is elimination method. The number of multiplications and divisions required by
the elimination method is approximately N =n*+n*—n. Thus, for n=10, N=1090, and for
n=100, N=1,009,900. Obviously, the elimination method is preferred.
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Example: Cramer's rule.
Let's illustrate Cramer's rule by solving the following system,

80x, —20x, —20x, =20
—20x +40x, —20x, =20
—20x, —20x, +130x; =20

Solution:
80 -20 -20
det(A)=|-20 40 —20/=300,000
-20 -20 130

Next calculate det(A"), det(A?), and det(A®).

20 -20 -20
det(A') =20 40 —20/=180,000
20 —-20 130
80 20 -20
det(A*)=-20 20 - 20|=300,000
-20 20 130
80 -20 20
det(A*) =|-20 40 20/=120,000
-20 -20 20

. det(A") _ 180,000 _ 060 x — det(A?) _ 300,000 _ 100 x — det(A%) _ 120,000 _
' det(A) 300,000 > det(A) 300,000 * det(A) 300,000

0.40
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Gauss Elimination

Elimination methods solve a system of linear algebraic
equations by solving one equation; say the first
equation, for one of the unknowns, say x;, in terms of
the remaining unknowns, x; to x,, then substituting the
expression for x; into the remaining n-1 equations to
determine n-1 equations involving x, to x, This
eliminations procedure is performed n-1 times until the
last step yields an equation involving only x,. This
process is called elimination.

The value of x,, can be calculated from the final
equation in the elimination procedure. Then x,.; can be
calculated from modified equation n-1, which contains
only x, and x,; then x,, can be calculated from
modified equation n-2, which contains only x,, X,.;, and
Xn.2. This procedure is performed n-1 times to calculate
X,..1 to x;. This process is called back substitution. Johann Carl Friedrich Gauss

1777 - 1855

The elimination procedure described in the previous section, including scaled pivoting, is
commonly called Gauss elimination. It is the most important and most useful direct
elimination method for solving systems of linear algebraic equations. The Gauss-Jordan
method, the matrix inverse method, the LU factorization method, and the Thomas algorithm
are all modifications or extensions of Gauss elimination method. Pivoting is an essential
element of Gauss elimination.

Elimination

Let's illustrate the elimination method by solving the following system of equations:

80X, —20%, —20%X, =20 e, @
—20X%, +40X, —20%X; =20 e (2)
—20% —20X, +130X, =20 . (3)

Solve Eq. (1) for x;. Thus,

g = 20-C20% -20%] (4)
80

Substituting Eq. (4) into Eq. (2) gives

}+40x2—20x3=2o ............ (5)

g { [20— (-20) x, - (-20) x,]
80
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which can be simplified to give
35X, —25X; =25 oo (6)

Substituting Eq. (4) into Eq. (3) gives

~ 20{ [20-(-=20) ;(2) —(220)%, ]} —20x, +130%, =20 .......... (7)

which can be simplified to give
L )3 O SR )
Next solve Eq. (6) for x2. Thus,

X, = W ................................................................. C)]

Substituting Eq. (9) into Eq. (8) yields
- 25{%} F125%, =25 cooveeeeeeeeeeeeeeee e (10)

which can be simplified to give

80X, —20X, —20X; =20 eoooveeeeeeee e (12)
35X, ~ 25X, =25 oo (13)
750 300
Xy = e 14
7% == 14)

which is equivalent to the original equation. This completes the elimination process.
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Back substitution

The solution to Eq's. (12, 13, and 14) is accomplished easily by back substitution. Starting
with equation (14) and working backward yields

X, = 300 _ 440
750
- [25- (—22) (040)] _, oo
. = [20 - (=20) (1.00) - (-20) (0.40)] _ 0.60

80

Simple Elimination

The elimination procedure illustrated previously involves manipulation of the coefficient
matrix A and the nonhomogeneous vector b. components of the x vector are fixed in their
locations in the set of equations. As long as the columns are not interchanged, column j
corresponds to x;. Consequently, the x; notation does not need to be carried throughout the
operations. Only the numerical elements of A and b need to be considered. Thus, the
elimination procedure can be simplified by augmenting the A matrix with the b vector and
performing the row operations on the elements of the augmented A matrix to accomplish the
elimination process, then performing the back substitution process to determine the solution
vector. This simplified elimination procedure is illustrated in the following example.

Example: Solve the previous example using simple elimination?

Solution: The A matrix augmented by the b vector is

80 -20 -20]20
[Alb]=|-20 40 -20]|20
~-20 —20 130 |20

Performing the row operation to accomplish the elimination process yields:
80 -20 -20|20

~20 40 -20|20|R,—(-20/80)R,
~20 -20 130 |20 |R,—(-20/80)R,

80 —20 20|20
0 35 -25|25
0 -25 125 |25|R,—(-25/35)R,
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. _ [20-(-20)(1.00) - (-20) (0.40)]

=0.60
80 —20 —20|20 ' N 05138
0 35 -25|25 |= x2=[ _(_35)(' )]=1.oo
0 0 2R 230 g4
[ T 750
Gauss in 1803
Pivoting

The element on the major diagonal is called the pivot element. The elimination procedure
described so far fails immediately if the first pivot element ay; is zero. The procedure also fails
if any subsequent pivot element a;j is zero. Even though there may be no zeros on the major
diagonal in the original matrix, the elimination process may create zeros on the major
diagonal. The simple elimination procedure described so far must be modified to avoid zeros
on the major diagonal. This result can be accomplished by rearranging the equations, by
interchanging equations (rows) or variables (columns), before each elimination step to put
the element of largest magnitude on the diagonal. This process is called pivoting.
Interchanging both rows and columns called full pivoting. Full pivoting is quite complicated,
and thus it is rarely used. Interchanging only rows is called partial pivoting.

Pivoting eliminates zeros in the pivot element locations during the elimination process.
Pivoting also reduces round-off errors, since the pivot element is a divisor during the
elimination process, and division by large numbers introduces smaller round-off errors than
division by small numbers. When the procedure is repeated, round-off errors can compound.
This problem becomes more severe as the number of equations is increased.

Example: Elimination with pivoting to avoid zero pivot elements?

Solution: Using simple elimination with partial pivoting to solve the following system of linear
algebraic equations, Ax = b :

0 2 1 |Ix 5
4 1 -1||%x,|=|-3
-2 3 =3|| X 5

Let’s apply the elimination procedure by augmenting A with b. The first pivot element is zero,
so pivoting is required. The largest number (in magnitude) in the first column under the pivot
element occurs in the second row. Thus, interchanging the first and second rows and
evaluating the elimination multipliers yields
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4 1 -1|-3
0 2 115 | R,~(0/4)R,
~2 3 -3|5 | R,~(-2/4)R

Performing the elimination operations yields

4 1 -1]-3
02 1|5
o L _If

2 22

Although the pivot element in the second row is not zero, it is not the largest element in the
second column underneath the pivot element. Thus, pivoting is called for again. Note that
pivoting is based only on the rows below the pivot element. The rows above the pivot element
have already been through the elimination process. Using one of the rows above element
would destroy the elimination already accomplished. Interchanging the second and third rows
and evaluating the elimination multiplier yields

4 1 -1|-3
o1 17
2 2 2
0 2 1|5 R,—(4/7)R,

Performing the elimination operation yields

4 1 -1]-3 X, = -1
7077

0 - ——| = = X, =
2 22

00 3|3 X, =1

Scaling

The elimination process described so far can incur significant round-off errors when the
magnitudes of the pivot elements are smaller than the magnitudes of the other elements in the
equations containing the pivot elements. In such cases, scaling is employed to select the pivot
elements. After pivoting, elimination is applied to the original equations. Scaling is employed
only to select the pivot elements.
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Example: Elimination with scaled pivoting to reduce round-off errors?

Solution: Let's investigate the advantage of scaling by solving the following linear system:

3 2 105(|x 104
2 -3 103||x, |=| 98
1 1 3 || 3

Which has the exact solution X, =-1.0, X, =1.0,and x, =1.0. To accentuate the effects of
round-off, carry only three significant figures in the calculations. For the first column,
pivoting does not appear to be required. Thus, the augmented A matrix and the first set of row
operations are given by

3 2 105 | 104
2 -3 103 |98 | R,-(0.667)R,
1 1 3|3 R, — (0.333)R,

which gives

3 2 105 | 104
0 -433 330 286
0 0334 -320]|-316 | R,—(-0.077)R,

Pivoting is not required for the second column. Performing the elimination indicated yields
the triangularized matrix

3 2 105 | 104 x, = —0.844
0 —-433 330 286 = X, =0.924
0 0 ~295 | —29.4 X, = 0.997

which does not agree very well with the exact solution

=-10
0
0

Xl
X, =1.
Xs =1.

Round-off errors due to the three-digit precision have polluted the solution.
The effect of round-off can be reduced by scaling of equations before pivoting. Since scaling
itself introduces round-off, it should be used only to determine if pivoting is required. All

calculation should be made with the original unscaled equations.
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Let's rework the problem using scaling to determine if pivoting is required. The first step in
the elimination procedure eliminates all the elements in the first column under element all.
Before performing that step, let's scale all the elements in column 1 by the largest element in
each row. The result is

3/105 0.0286
a, =|2/103|=|0.0194
1/3 0.3333

Where the notation a, denotes the column vector consisting of the scaled elements from the

first column of matrix A. The third element of a,is the largest element in a, which indicates
that rows 7 and 3 of matrix A should be interchanged. Thus, the previous equation with the
elimination multipliers indicated, becomes

1 1 3| 3
2 -3 103| 98 R, - (2/D)R,
3 2 105/104 | R,-(3/)R,

Performing the elimination and indicating the next elimination multiplier yields

1 1 313
0 -5 97 | 92
0 -1 96 | 95| R,—(L/5)R,

Scaling the second and third elements of column 2 gives

a, =|—5/97 |=|—0.0516
~1/96 | |-0.0104

Consequently, pivoting is not indicated. Performing the elimination indicated yields

1.0 1.0 30 | 30
0.0 -5.0 97.0 | 920
00 00 766 | 76.6

And performing back substitution yields x, =-1.0, x, =1.0, and x, =1.0, which is the exact
solution.
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Programming

The Gauss elimination procedure, in a format suitable for programming on a computer, is
summarized as follows:

1. Define the nxn coefficient matrix A, the nx1 column vector b, and the nx1 order vector
0.

2. Starting with column 1, scale column k (k = 1,2,.....,n-1) and search for the element of
largest magnitude in column k and pivot (interchange rows) to put the coefficient into
the ayy pivot position. This step is accomplished by interchanging the corresponding
elements of the nX1 order vector o.

3. For column k (k = 1,2,.....,n-1), apply the elimination procedure to rows i (i = k+I,
k+2,...... , 1) to create zeros in column k below the pivot element, ay;. Do not actually
calculate the zeros in column k. In fact, storing the elimination multipliers, em = (a;;/

ay,), in place of the eliminated elements, a;;., crates the Doolittle LU factorization that
will be presented later. Thus,

a, .
ai,j:ai,j—[a_'k]ak,j (,j=k+1,k+2,....... ,n)

k., k

4. After step 3 is applied to all k columns, (k = 1, 2,
upper triangular.

...... , n-1), the original A matrix is

5. 4. Solve for x using back substitution. If more than one b vector is present, solve for the
corresponding x vectors one at a time. Thus,

b,
X, =
an,n
b, — ,Za"i X;
X, = ’:: (i=n-1,n-2....1)
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Gauss-Jordan Elimination

Gauss-Jordan elimination is a variation of Gauss
elimination in which the elements above the major
diagonal are eliminated (made zero) as well as the
elements below the major diagonal. The A matrix
is transformed to a diagonal matrix. The rows are
usually scaled to yield unity diagonal elements,
which transforms the A4 matrix to the identity
matrix, £ The transformed & vector is then the
solution vector x.

The numbers of multiplications and divisions
for Gauss-Jordan elimination is approximately

N =(n*/2-n/2)+n?, which is approximately
50 percent larger than of Gauss elimination.
Consequently, Gauss elimination is preferred.

Example: Gauss-Jordan elimination?

Marie Ennemond Camille Jordan

1838 - 1922

Solution: Let's rework the previous example using simple Gauss-Jordan elimination, that is,
elimination without pivoting. The augmented A matrix is

80 -20 -20|20| R,/80
-20 40 -20|20
-20 —-20 130 |20

Scaling row 1 to give a,, = 7 gives

1 -1/4 -1/4|1/4
~20 40  -20]|20 | R,—(-20)R,
~20 -20 130 |20 | R,-(-20)R,

Applying elimination below row 1 yields

1 -1/4 -1/4|1/4
0 35  -25[25 | R,/35
0 -25 125 |25

Scaling row 2 to give a,; = 1 gives
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1 -1/4 -1/4|1/4 | R, —(-1/4)R,
0 1  -5/7|5/7
0 -25 125 |25 R, - (-25)R,

Applying elimination both above and below row 2 yields

10 -3/73/7
01 -5/7|5/7
0 0 750/7 |300/7| R,/(750/7)

Scaling row 3 to give az; = 1 gives
1 0 -3/7|3/7 7 R —(=3/7)R,

0 1 -5/7|5/7 | R,—(-5/7)R,

00

1215

Applying elimination above row 3 completes the process.

1 0 0] 0.60
01 0]100
00 1040

The matrix A has been transformed to the identity matrix I and the b vector has been
transformed to the solution vector, x. Thus, X" = [0.60 1.00 0.40].
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The inverse of a square matrix A is the matrix A" such that AA" = A”. A = I. Gauss-Jordan
elimination can be used to evaluate the inverse of matrix A by augmenting A with the identity
matrix I and applying the Gauss-Jordan algorithm. The transformed A matrix is the identity
matrix I, and the transformed identity matrix is the matrix inverse, A”. Thus, applying
Gauss-Jordan elimination yields

(A1 1] 1A

Example: Matrix inverse by Gauss-Jordan elimination?

Solution: Let's evaluate the inverse of matrix A presented in the last example. First, augment
matrix A with the identity matrix, 1. Thus,

80 -20 -20 | 1 0 O
[A]I]=]|-20 40 -20 | 0 1 O
~20 -20 130 | 0 O 1

Performing Gauss-Jordan elimination transforms the matrix to

1 0 0 | 2/125 1/100 1/250
0 1 0 | 1/100 1/30 1/150
0 0 1 | 1/250 1/150 7/750

from which

2/125 1/100 1/250 0.016000 0.010000 0.004000
A" =|1/100 1/30 1/150 |=|0.010000 0.033333 0.007667
1/250 1/150 7/750 0.004000 0.007667 0.009333
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The Matrix Inverse Method

Systems of linear algebraic equations can be solved using the matrix inverse, A”. Consider
the general system of linear algebraic equations:

AX=D e @
Multiplying Eq. (1) by A" yields
A*Ax=1lx=x=A"D

From which

X=A"b

Example: The matrix inverse method?

Solution: Let's solve the linear system considered in the previous example using the matrix
inverse method.

2/125 1/100 1/250 20
A'=|1/100 1/30 1/150| b=|20
1/250 1/150 7/750 20

2/125 1/100 1/250 | |20
x=A"0=|1/100 1/30 1/150 | |20
1/250 1/150 7/750] |20

X, = (2/125)(20) + (1/100) (20) + (1/ 250) (20) = 0.60
X, = (1/100) (20) + (1/30) (20) + (1/150) (20) =1.00
X, = (1/250) (20) + (1/150) (20) + (7/750) (20) = 0.40

Thus, X" =[0.60 1.00 0.40]
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2. Iterative Methods

For many large systems of linear algebraic equations, Ax = b, the coefficient matrix A is
extremely sparse. That is, most of the elements of A are zero. If the matrix is diagonally
dominant,

n
‘ai,i‘ Z Z a; j‘ (I=1.... n) , With > true for at least one row.
j=1j#i

it is generally more efficient to solve such systems of linear algebraic equations by iterative
methods than by direct elimination methods.

Iterative methods begin by assuming an initial solution vector x. The initial solution vector
is used to generate an improved solution vector x” based on some strategy for reducing the
difference between x” and the actual solution vector x. This procedure is repeated (i.e.,
iterated) to convergence. The procedure is convergent if each iteration produces
approximations to the solution vector that approach the exact solution vector as the number
of iterations increases.

The number of iterations required to achieve convergence depends on:

1. The dominance of the diagonal coefficients. As the diagonal dominance increases,
the number of iterations required to satisfy the convergence criterion decreases.

2. The method of iteration used.

The initial solution vector.

4. The convergence criterion specified.

bl

The Jacobi Iteration Method

Consider the general system of linear algebraic
equations, Ax=b, written in index notation:

Zn:ai‘j X; =b, (1=12,...cc..... ) @

In Jacobi iteration, each equation of the system
is solved for the component of the solution vector
associated with the diagonal element, that is, x;
Thus,

Carl Gustav Jacob Jacobi

1804 - 1851
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:ai[bi_izlai,j X, - Ya, xjj (SN ) RO )

=1 j=i+l

)

An initial solution vector X is chosen. The superscript in parentheses denotes the iteration
®

number, with zero denoting the initial solution vector. The initial solution vector x is
substituted into Eq. (2) to yield the first improve solution vector x. Thus,

j=1 j=i+l

(b IZa, (% ZaIJ X J (SN 20N 1) R (3)

This procedure is repeated (i.e., iterated) until some convergence criterion is satisfied. The
Jacobi algorithm for the general iteration step (k) is:

(k+1) (b Zal J x Zal P X j (i=12,.... M) (4)

j=1 j=i+l

An equivalent, but more convenient, form of Eq. (4) can be obtained by adding and subtracting
xf” from the right-hand side of Eq. (4) to yield

x, Y = x.® +i(bi >, xjmj (SN 1) K (5)

Eq. (5) is generally written in the form

x, D = x © +F2— (=12 1) oo, (6.a)
R =b-Ya x"“ (=12.n) i, (6.b)
j=1

where the term R is called the residual of equation i. The residuals R ® are simply the net
values of the equations evaluated for the approximate solution vector x™.
The Jacobi method is sometimes called the method of simultaneous iteration because all
values of x; are iterated simultaneously. That is, all values of x**" depends only on the values
®) . o .
of x;~. The order of processing the equation is immaterial.
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Example: The Jacobi Iteration Method.

Solution: To illustrate the Jacobi iteration method, let's solve the following system of linear
algebraic equations:

4 -1 0 1 O07[x] [100]
-1 4 -1 0 1||x,| |100
0 -1 4 -1 0||x|=]100
1 0 -1 4 -1{|x,| 100
0 1 0 -1 4 ||[x] [100]

which can be expanded to become

4x, —X, +x, =100

— X, +4X, —X; + X, =100
—X, +4X; —x, =100

X, — X3 +4X, —X; =100
X, — X, +4 X, =100

These equations can be rearranged, using Eq. (6.D), to yield expressions for the residuals,
2 Thus,

R, =100-4x, + X, — X,
R, =100+ X, —4X, + X; — X5
R, =100+X, —4X; + X,

......................................... (7)
R, =100 —X, + X; —4X, + X;
R, =100—-X, + X, =4 X
k X, X5 X1 Xy Xq
0 0.000000 0.000000 0.000000 0.000000 0.000000
1 25.000000 25.000000 25.600000 25.000000 25.000000
2 25.000000 31.250000 37.500000 31.250000 25.000000
3 25.000000 34.375000 40.625000 34.375000 25.000000
4 25.000000 35.156250 42.187500 35.156250 25.000000
5 25.000000 35.546875 42.578125 35.546875 25.000000
16 25.000000 35.714284 42.857140 35.714284 25.000000
17 25.000000 35.714285 42.857142 35.714285 25.600000
18 25.000000 35.714285 42.857143 35.714285 25.000000
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To initiate the solution let X" =[0.0 0.0 0.0 0.0 0.0]. Substituting these values into Eq.

(7) gives R =100.0 (i =1....... D) . Substituting these values into Eq. (6.a) gives
%Y =%, =x," =x, =x,% =25.0. The procedure is then repeated with these values to
obtain x() etc.

The first and subsequent iterations are summarized in the above table. Due to the symmetry
of the coefficient matrix A and the symmetry of the b vector, x;=xs and x,;=x,. The calculations

were carried out on a 13-digit precision computer and iterated until all |Ax;| changed by less
than 0.000001 between iterations, which required 18 iterations.

Accuracy

The accuracy of any approximate method is measured in terms of the error of the method.
There are two ways to specify error: absolute error and relative error:

Absolute error = approximate value — exact value.

Relative error = absolute error/exact value.

The Gauss-Seidel Iteration Method

In the Jacobi method, all values of x*™” are based on

x™. The Gauss-Seidel method is similar to the Jacobi
method, except that for most recently computed
values of all x; are used in all computations. In brief,
as better values of x; are obtained, use them
immediately. Like the Jacobi method, the Gauss-
Seidel method requires diagonal dominance to ensure
convergence. The Gauss-Seidel algorithm is obtained
from Jacobi algorithm, Eq. (4), by using x,-(kH) values
in the summation from j=I to i-1 (assuming the
sweeps through the equations proceed from i=I to n).
Thus,

Philipp Ludwig von Seidel

1821 - 1896

wy L Za.,xk” Za”x (=020 M) i . (©)

i j=1 j=i+l
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Illustration for 3%3 system of linear algebraic equations:

a; X; +a, X, +a3 X3 = bl
Ay Xp + Ay X, +8y X3 = bz
Ag Xy +ag X, Az X3 = ba

' all all ’ a'll X3
e _ b, ay x b0 _ 8oy 00
a22 a22 a22
(k+1) _ b_3_ﬂ (k1) Qg o (ke)
’ a33 a33 ' a33 i

Equation (8) can be written in terms of the residuals R; by adding and subtracting x{* from
the right-hand side of the equation and rearranging to yield

k+1 k R'(k)
Y =x O (i=120cccN) e, (9.a)
a‘i,i
-1 n
R“=b-Ya x"->a x" (i=12....0) ... (9.b)
j=1 j=i

The Gauss-Seidel method is sometimes called the method of successive iteration because the
most recent values of all x;are used in all the calculations. Gauss-Seidel iteration generally

converges faster than Jacobi iteration.
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Example: The Gauss-Seidel Iteration Method.

Solution: let's rework the problem presented in the last example using Gauss-Seidel iteration.
The residuals are given by Eq. (9.b). Substituting the initial solution vector,
x0T :[0.0 0.0 00 0.0 0.0], into Eq. (9.b.1) gives R/”=100.0. Substituting that result
into Eq. (9.a.1) gives x/7=25.0. Substituting X" = [250 0.0 0.0 0.0 0.0]into Eq. (9.b.2)
gives

R, = (100.0+25.0) =125.0

Substituting this result into Eq. (9.a.2) yields

x,” =0.0+ 150 _ 3195
4

Continuing in this manner yields Ry”=131.25, x;V=32.81250, R;/”=107.81250,
x/"=26.953125, R;"=95.703125, x;/=23.925781.

The first and subsequent iterations are summarized in the following table. The intermediate
iterates are no longer symmetrical as they were in the last example. The calculations were

carried out on a 13-digit precision computer and iterated until all |Ax;| changed by less than

0.000001 between iterations, which required 15 iterations, which is three less than required
by the Jacobi method in the last example.

k X X3 Xy X X5
0 0.000000 0.000000 0.000000 0.000000
| 25.000000 31.250000 32.812500 26.953125 23925781
2 26.074219 33.740234 40.173340 34.506226 25.191498
3 24.808502 34.947586 42.363453 35.686612 25.184757
4 24815243 35.498485 42.796274 35.791447 25.073240
5 24.926760 35.662448 42.863474 35.752489 25022510
13 25.000002 35.714287 42.857142 35.714285 25.999999
14 25.000001 35.714286 42.857143 35.714285 25.000000
15 25.000000 35.714286 42.857143 35.714286 25.000000
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The Successive-Over-Relaxation (SOR) Method

Iterative methods are frequently referred to as relaxation methods, since the iterative
procedure can be viewed as relaxing x” to the exact value x. Historically, the method of
relaxation, or just the term relaxation, refers to a specific procedure attributed to Southwell
(1940).

Southwell observed that in many cases the change in x; from iteration to iteration were
always in the same directions. Consequently, over-correcting (i.e. over-relaxing) the values
of x; by the right amount accelerates convergence. This procedure is illustrated in the Figure

below.

over-
relaxation

relaxation

1 2 3 4
Relaxation step k

The Gauss-Seidel method can be modified to include over-relaxation simply by multiplying
the residual R in Eq. (9.a), by the over-relaxation factor, @. Thus, the successive-over-

relaxation methodis given by

When W=1.0, Eq. (10.a) yields the Gauss-Seidel method. When 1.0 < @ < 2.0, the system
of equations is over-relaxed. Over-relaxation is appropriate for systems of linear algebraic
equations. when O < 1.0, the system of equations is under-relaxed. Under-relaxation is
appropriate when the Gauss-Seidel algorithm causes the solution vector to overshoot and

move farther away from the exact solution. This behavior is generally associated with the
iterative solution of systems of nonlinear algebraic equations. The iterative method diverges
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if@ 2 2.0. The relaxation factor does not change the final solution since it multiplies the
residual R;, which is zero when the final solution is reached.

The optimum value of the over-relaxation factor ®,, depends on the size of the system of
equations (i.e., the number of equations) and the nature of equations (i.e. the strength of the
diagonal dominance, the structure of the coefficient matrix, etc.). As a general rule, larger

values of W, are associated with larger systems of equations.

Example: The SOR Method.

Solution: To illustrate the SOR method, let's rework the problem presented in the previous

example using W=1.1. The residuals are given by Eq. (10.b). Substituting the initial value
vector, X7 :[0.0 0.0 0.0 0.0 0.0], into Eq. (10.b.1) gives R,"=100.0. Substituting that

value into Eq. (10.a.1) with ®W=1.1 gives

xY =0.0 +1.10$ = 27.500000

Substituting x" =[275 0.0 0.0 0.0 0.0] into Eq. (10.b.2) gives

R, =(100.0+27.5)=1275
Substituting this result into Eq. (10.a.2) yields
x,"” =0.0 +1.1o$ = 35.062500

Continuing in this manner yield the results presented in the next table.
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The first and subsequent iterations are summarized in the following table. The calculations
were carried out on a 13-digit precision computer and iterated until all |Axi| changed by less
than 0.000001 between iterations, which required 13 iterations, which is 5 less than required
by the Jacobi method and 2 less than required by the Gauss-Seidel method in the last two

examples, respectively. Its value becomes more significant as the numbers of equations
increases.

k X Xy Xy X4 X5
0 0.000000 0.000000 0.000000 0.000000 0.000000
1 27.500000 35.062500 37.142188 30.151602 26.149503
2 26.100497 34.194375 41.480925 35.905571 25355629
3 24419371 35.230346 42.914285 35.968342 25.167386
4 24.855114 35.692519 42.915308 35.790750 25.010375
5 24987475 35.726188 42.875627 35.717992 24.996719
11 24999996 35.714285 42.857145 35.714287 25.000000
12 25.000000 35.714286 42.857143 35.714286 25.000000
13 25.000000 35.714286 42.857143 35.714286 25.060000

The optimum value of @ can be determined by experimentation. If a problem is to be worked
only once, that procedure is not worthwhile. However, if a problem is to be worked any times

with the same A matrix for many different b vectors, then a search for ®,, may be worthwhile.
The following table presents the result of such a search for the problem considered in the last

example. For this problem, 1.05< @ <1.14 yields the most efficient solution. Much more
dramatic results are obtained for large systems of equations.

w k w k w k
1.00 15 1.06 13 1.12 13
1.01 14 1.07 13 1.13 13
1.02 14 1.08 13 1.14 13
1.03 14 1.09 13 1.15 14
1.04 14 1.10 13

1.05 13 1.11 13

Number of iterations as a function of w
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MATLAB APPLICATIONS

Simple Gauss

function [x,det] = gauss(A,Db)

A =[134; 54 7; 02 3];

b=[1 2 4]"';

% Solves A*x = b by Gauss elimination and computes det (A).
% USAGE: [x,det] = gauss(A,Db)

Q

if size(b,2) > 1; b = b'; end % b must be column vector
n = length (b);

for k = 1:n-1 % Elimination phase

for i= k+1:n

if A(i,k) ~= 0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1l:n) - lambda*A(k,k+1:n);

b(i)= b(i) - lambda*b(k);

end

end

end

for k = n:-1:1 $ Back substitution phase
b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,Kk);
end

if nargout == 2; det = prod(diag(d)); end
for k = n:-1:1 % Back substitution phase
b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);
end

x = b;

Gauss with Partial Pivoting

function x = gausspiv (A, B)

%The sizes of matrices A,B are supposed to be NA x NA and NA x NB.
$This function solves Ax = B by Gauss elimination algorithm with
pivoting.

clear; clc
A=[10 2 0 1; 51 3 1; 6 -3 0 1; 51 -1 -5];

B=[1 -2 =10 0]"';

NA = size(A,2); [NB1,NB] = size(B);

if NB1 ~= NA, error('A and B must have compatible dimensions');
end

N = NA + NB; AB = [A(1:NA,1:NA) B(1:NA,1:NB)] % Augmented matrix
epss = eps*ones(NA,1);

for k = 1:NA

%Scaled Partial Pivoting at AB(k, k) by Eg.(2.2.20)

[akx, kx] = max(abs (AB(k:NA,k)) ./

max (abs ([AB(k:NA,k + 1:NA) epss(1:NA - k + 1)]1")) ")

if akx < eps, error('Singular matrix and No unique solution'); end
mx = k + kx - 1;
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if kx > 1 % Row change if necessary
tmp row = AB(k,k:N);

AB(k,k:N) = AB(mx,k:N);

AB (mx,k:N) = tmp row;

end

AB

% Gauss forward elimination

AB(k,k + 1:N) = AB(k,k+1:N)/AB(k,k);

AB(k, k) = 1; Smake each diagonal element one

form = k + 1: NA

AB(m, k+1:N) = AB(m,k+1:N) - AB(m, k) *AB(k,k+1:N); %Eg.(2.2.5)
AB(m, k) = 0;

end

AB

end

%backward substitution for a upper-triangular matrix egation

% having all the diagonal elements equal to one

x (NA, :) = AB(NA,NA+1:N);

for m = NA-1: -1:1

x(m,:) = AB(m,NA + 1:N)-AB(m,m + 1:NA)*x(m + 1:NA,:); SEg.(2.2.7)
end

Gauss-Seidel

function X = gauseid (A, B, X0, kmax)

%$This function finds x = A"-1 B by Gauss—-Seidel iteration.
A=[0 2 01; 2 2 3 2; 4 -3 01; 61 -6 -5];

B=[0 -2 -7 6]"';

$X0=[1 1 1 17];

kmax=1000;

if nargin < 4, tol = le-6; kmax = 100;

elseif kmax < 1, tol = max(kmax,le-16); kmax = 1000;

else tol = le-6;

end; 1f nargin < 4, tol = le-6; kmax = 100; end

if nargin < 3, X0 = zeros(size(B)); end

NA = size(A,1l); X = X0;

for k = 1: kmax

X(1l,:) = (B(1l,:)-A(1,2:NA)*X(2:NA,:))/A(1,1);

for m = 2:NA-1

tmp = B(m,:)-A(m,1l:m-1)*X(1l:m - 1,:)-A(m,m + 1:NA)*X(m + 1:NA,:);
X(m,:) = tmp/A(m,m); %$Eg.(2.5.4)

end

X(NA,:) = (B(NA,:)-A(NA,1:NA - 1)*X(1:NA - 1,:))/A(NA,NA);
if nargout == 0, X, end %To see the intermediate results
if norm(X - X0)/(norm(X0) + eps)<tol, break; end

X0 = X

end
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% Gauss—-Seidel Method in MATLAB

function x = gauss_siedel( A ,B )
disp ( 'Enter the system of linear equations in the form of AX=B')

$Inputting matrix A

A = input ( 'Enter matrix A : \n'")
% check if the entered matrix is a square matrix

[na , ma ] = size (A);

if na ~= ma
disp ('ERROR: Matrix A must be a square matrix')
return

end

(o)

% Inputting matrix B

B = input ( 'Enter matrix B : ")
% check 1if B is a column matrix

[nb , mb ] = size (B);

if nb ~= na || mb~=1
disp( 'ERROR: Matrix B must be a column matrix')
return

end

o)

% Separation of matrix A into lower triangular and upper
triangular matrices
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Numerical Analysis Unit-4: Numerical Differentiation & Integration

Unit-4: Numerical Differentiation and Integration

Numerical Differentiation

The evaluation of the derivatives is required in many problems in engineering and science:

di(f(x)>= £1(x) = £, (%)
X

The function f(x), which is to be differentiated, may be a known function or a set of discrete
data. In general, known functions can be differentiated exactly. Differentiation of discrete
data, however, requires an approximate numerical procedure.

Numerical differentiation formulas can be developed by fitting approximating functions (e.g.,
polynomials) to a set of discrete data and differentiating the approximating function. Thus,

L (F00)= £,
X

As illustrated in the figure below, even though the approximating polynomial P,(x) passes
through the discrete data points exactly, the derivatives of the polynomial P',(x) may not be a
very accurate approximation of the derivative of the exact function f(x) even at the known data
points themselves. In general, numerical differentiation is an inherently inaccurate process.

f(x)
Pn(X)

The simple function

f(x):%
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Numerical Analysis Unit-4: Numerical Differentiation & Integration

which has the exact derivatives

i(lj = f'(x) :_iz

dx \ x X
d? (1 2
| = :f" X) = —
dxz(xj %) x®

Can be considered to illustrate numerical differentiation procedures. In particular, at x = 3.5:

1 _ —0.081633...

5)

f'(3.5):—(3

2__ 0.046647...

5)%

£(3.5) = ;

4
f(x)

f(x)
0.312500
0.303030
0.298507
0.294118
0.285714
0.277778
0.273973
0.270270

3.35 |
3.40
3.50
3.60
3.65
3.70

Direct Fit Polynomials

One of the most classical procedures of numerical differentiation is the direct fit polynomials,
which can be used both for equally and unequally spaced sets of data. A direct fit polynomial
procedure is based on fitting the data directly by a polynomial and differentiating the
polynomial.

P(X)za, +aX+aXx +...+ax"

n
Where P,(x) is determined by one of the following methods:

1. Given N = n+l points, [x;, f(x))], determine the exact nth-degree polynomial that
passes through the data points, as will be discussed in unit 5.
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2. Given N > n+l points, [x;, f(x;)], determine the least squares nth-degree polynomial
that best fits the data points, as will be discussed in unit 5.

After approximating polynomial has been fit, the derivatives are determined by differentiating
the approximating polynomial. Thus,

f'(x) =P (X)=a, +2a,Xx+3a,x* +...

f"(x)=zP" (X)=2a, +6a,x+...

Example: Direct Fit Polynomials

Solution: Consider the following three data points:

x fx)

3.4 0.294118
3.5 0.285714
3.6 0.277778

First, fit the quadratic polynomial P,(X) =a, +a,X+a,X*, to the three data points:

0.294118 = a_ + a,(3.4) + &,(3.4)?
0.285714 = a_ +a,(3.5) + ,(3.5)°
0.277778 = a, + a,(3.6) + &,(3.6)’

Solving for a,, a;, and a; by Gauss elimination gives

a,=0.858314, a;=-0.245500, a;=0.023400

P, (x) = 0.858314 — 0.245500 x + 0.023400 x*

P', (X) = —0.245500 + 0.04680 x
P", (x) =0.046800

Substituting x = 3.5 yields

P', (3.5) = -0.245500+ 0.04680 (3.5) = —0.081700
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Taylor Series Approach

This approach is especially useful for deriving finite difference approximations if exact
derivatives (both total derivatives and partial derivatives) that appear in differential
equations.

Difference formulas for function of a single variable, f(x), can be developed from the Taylor
series for a function of a single variable, Eq. (0.6):

f(x)=f, +f/ Ax +% fIAX® +....... Uy

where f,=1(X,), fol = f/(XO) , etc. The continuous spatial domain D(x) must be

discretized into an equally spaced grid of discrete points, as illustrated in the figure below.
For the discretized x space,

f(x)=T,

where the subscript i denotes a particular spatial location. The Taylor series for f(x) at grid
points surrounding point i can be combined to obtain difference formulas for f'(x;), and f'(x;),
efc.

D{x) -
—& & - <& . »
-2 =1 i i+1 i+2 X

Continuous spatial domain D(x) and discretized x space.

The Taylor series for the function f(x) can be rewritten as

1 1
f(x)=f, + fX\OAx+E Frelo AXZ + .. e |0 AX" ...
The Taylor formula with the remainder is given by Eq. (0.10):
F(X) = f, + 1], Ax+ o £, AXC LA+ R
(x)=f,+ £, X+ oo AXE + i x| o X" +

where the remainder term R™ is given by

n+ 1 n+
R 1=mf(n+1)x(§)AX '

where X, <& < X, +AX
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Consider the equally spaced discrete finite difference grid illustrated in the above figure.
Choose point i as the base point, and write the Taylor series for fi; and fi; :

fio="f+1] Ax+% fr|i AX? + i AX° +— o1 AX* e

fi_lzfi—fx\iAx+%fxx\iAx2—%f A +—f (A

XXX XXXX

Subtracting fi.; from fi; gives

f.

i+1

=26 Akt
3

Letting the f... be the remainder term and solving for fx‘ i vields

f,—f 1
fl = i+1 -1 = f AXZ
X‘I 2 AX 6 XXX (5)
where X, 1—§<X

The last equation is an exact expression for fx‘i . If the remainder term is truncated it will

yield an O(AXZ) finite difference approximation of fx‘ i . Thus,

fi+1 B fi—l

X" 2 AX

Adding fi; to fi1 gives

f.

i+l

A+

XXXX

+f =21+ f,], A +1—f

Letting the f.. term be the remainder term and solving for fxx |i yields

fa-2f+f, 1

i+l i -1 _ = f AXZ
12 xxxx(g)

fXX‘I sz
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where X1 <& < X,y
Truncating the remainder term yields a finite difference approximation for fxx| i . Thus,

‘ _ fi+1 —2 fi + fi—l
XX | i sz

f

These difference equations are centered-difference formulas. They are inherently more
accurate than one-sided formulas.

Example: Taylor series difference formulas.

Solution: Consider the following three data points:

x fx)

3.4 0.294118
3.5 0.285714
3.6 0.277778

‘ _ fi+1_ fi—l
2 Ax
£/(35) = f(3.6) — f(3.4) _ 0.277778 —0.294118 _ _0.08170
2(0.1) 2(0.1)
f ‘ _fa-2f+ 1
xx|i AX2
t/(3.5) = f(3.6)-2f(3.5)+ f(3.4) _ 0.277778 —2(0.285714 + 0.294118 _ 0.0468

(0.1)? (0.1)*

These are the same results that are obtained previously from the direct fit polynomial method
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Error Estimation and Extrapolation

When the functional form of an error of a numerical algorithm is known, the error can be
estimated by evaluating the algorithm for two different increment sizes. The error estimate
can be used both for error control and extrapolation.

Consider a numerical algorithm which approximates an exact calculation with an error that
depends on an increment, h. Thus,

= f(h)+ AR +Bh™ +Ch™™ 4 . e, )

exact

where n is the order of the leading error term and m is the increment in the order of the
following error terms. Applying the algorithm at two increment sizes, ~ h; =h and h, = h/R,
gives

— F(N)+ AR  £0(h™™) e (2.)

— fF(N/R)+ A(h/R)" +0(h™™) oo, (2.b)

exact

exact

Subtracting Eq. (2.b) from Eq. (2.a) gives

0= F(h)= F(N/R)+ Ah" = AN/ R)"  oooveemeeeeeemeeeere e 3)

Solving Eq. (3) for the leading error terms in Eqs. (2.a) and (2.b) yields

Error(h) = Ah" =

I?n_l(f(h/R)— F(N) (4.2)

Error(h/R) = A(h/R)" =ﬁ(f(h/R)- () (4b)

Equation (4) can be used to estimate the leading error term in Eq. (2).
The error estimate can be added to the approximate results to yield an improved
approximation. This process is called extrapolation. Adding Eq. (4.b) to Eq. (2.b) gives

1 n+m
Extrapolated value = f (h/R) + ar _1(f (h/R)=f(h))+0(h™") ....... ©)

The error of the extrapolated value is O(h"™). Two O(h™™) extrapolated results can be

extrapolated to give an O(hn+2m) result, where the exponent, n, in Eq. (5) is replaced with
n+m. Higher-order extrapolations can be obtained by successive applications of Eq. (5)
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Example: Error estimation and extrapolation.

Solution: Consider the following five data points:

x fx)

3.3 0.303030
3.4 0.294118
3.5 0.285714
3.6 0.277778
3.7 0.270270

In the last example we evaluated f'(3.5) with AX=0.1. A more accurate result could be
obtained by f(3.5) with AX =0.05, which requires data at x = 3.45 and 3.55. While these
points are not available, data are available at x = 3.3 and 3.7, for which AX=0.2.
Evaluating f(3.5) using AX=0.2 gives

f(3.7)— £(3.3) _ 0.270270 —0.303030
2(0.2) 2(0.2)

f/(3.5) = = —0.081900

The exact error in this result is Error =—-0.081900 — (-0.081633) = —0.000267 , which is
approximately four times larger than the exact error obtained in the last example where
£'(3.5)=-0.081700, for which the exact erroris Error =—-0.081700 — (—0.081633) = —0.000067

Now that two estimates of f(3.5) are available, the error estimate for the result with the
smaller AX can be calculated from Eq. (4.b). Thus,

Error(h/R):RnL_l(f(h/R)— f (h))

1
2° -1

Error (Ax/2) = [-0.08177 — (—0.081900)] = 0.000067

Applying the extrapolation formula, Eq. (5), gives

1
R"-1

Extrapolated value = f(h/R)+ (f(h/R) - f(h))+0(h™)

Extrapolated value = - 0081700 + 0.000067 = - 0.081633

Which is the exact value to six digits after the decimal place.
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Finite Difference Formulation

We can drive the same finite difference formulas using the general definition of the derivative, but without
the ability to recognize the error order to establish the extrapolation process discussed earlier.

The general definition of the derivative can be illustrated as follows:

tanaent

Ay  f(x+Ax)— f(x)
AX AX

f/(X)ZAX Lim )Of(X+AX)_f(X)

AX
Xi Xi+h
f.—f
1
fi( ) = % Forward differentiation 5 5
i< iy >
fi+1
FO fi—fiy . - b , ,
i h Backward differentiation | |
: : :
1 1 1
1 1 1
! 1 1 1
! 1 1 1
fa— T o
1 ) 1
fi() =—2 h 2 Central differentiation d \ i E E
I | : : I
1 1 1 1 1
OR — + » > ‘ >
F2 -1 [ i+ i+2 X

1
fi(l) = —[fi+1 - fi—l]
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fi(2) —

i+=
2

(] @
f 1 f. 1

1Ei+1 — 1Ei _ fi — fi—1

£ =
! h

Ol ok —DT|Ik

fi(2) —

fo-f-fi+f,

1
fi(2) :F[fm_z‘ci + fi—l]

| T+l

2h

() _ 1

fi _—[fi+2 —-2f

2h®

O _2f® 1 £

1
h?

fi(S) _ h_12 fi+2 B
1

fi ) fi+1 B fi—l + fi — fi—2
2h 2h

—[fi+2 - fi -2 fi+1 +2 fi—l + fi - fi—z]

+2f,—f,]
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1 -
£ = he 7 -2 + fiﬁ)]
i f|—2 fi—l fl fi+1 fi+2_
Lo e 1
£ = 7 1 -2 1 7
-2 4 -2
i 1 -2 1 i

1
fi(4) — F[fi—z -4 fi—l +6 fi -4 fi+1 + fi+2]

All the finite difference formula can be represented in stencil representation. Thus,

=t x OO x
o= 1 x OOQ x
= L OO
OGO

|

~
(%)
S
I
[E—
1

I

S~
—~_
i
p—
[
[
I 1
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Numerical Integration

The evaluation of integrals, a process known as integration or quadrature, is required in many
problems in engineering and science.

I:j'f(x)dx

i .
® f(x)=1/x

X fx)
- [fo0de 3.1 | 0.32258065

3.2 | 0.31250000
3.3 | 0.30303030
3.4 | 0.29411765
3.5 | 0.28571429
3.6 | 0.27777778
3.7 | 0.27027027
3.8 | 0.26315789
3.9 || 0.25641026

The function f(x), which is to be integrated, may be a known function or a set of discrete data.
Some known functions have an exact integral, in which case the above equation f(x) = 1/x can
be evaluated exactly in closed form:

f(x):%

I = Zdx=[In (k] =In (—j — 0.22957444...
31 X | 3.1

Many known functions, however, do not have an exact integral, and an approximate numerical
procedure is required to evaluate f(x). In many cases, the function f(x) is known only at a set
of discrete points, in which case an approximate numerical procedure is again required to
evaluate f(x).

Numerical integration (quadrature) formulas can be developed by fitting approximating
functions (e.g., polynomials) to discrete data and integrating the approximating function:
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D C———— T

f (x)dx ;i P (x)dx

This process is illustrated in the next figure.

4 f{x) y
f(x) / szx; l
niX

4

(@) " (0)

Numerical integration. (a) Exact integral. (b) Approximate integral.

Direct Fit Polynomials

A straightforward numerical integration procedure that can be used for both unequally spaced
data and equally spaced data is based on fitting the data by a direct fit polynomial and
integrating that polynomial. Thus,

P(X)=a, +a,Xx+a,X’ +...+aX" +..
Where P,(x) is determined by one of the following methods:
1. Given N = n+l points, [x;, f(x))], determine the exact nth-degree polynomial that
passes through the data points, as discussed in chapter 3.
2. Given N > n+l points, [x;, f(x;)], determine the least squares nth-degree polynomial
that best fits the data points, as discussed in chapter 3.
3. Given a known function f(x) evaluate f(x) at N discrete points and fit a polynomial by

an exact fit or least squares fit.

After approximating polynomial has been fit, the integral becomes
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D ey T

f (x) dx ;j{ P (x) dx

2 3 b
I :(a x+a1X—+a2X—+....)
° 2 3

a

Introducing the limits of integration and evaluation gives the value of the integral.
Example: Direct fit polynomial

Solution: Lets solve the example problem presented in the introduction by a direct fit
polynomial. Recall:

3.9 1 3.9
| = j—dx; j P, (x) dx
3.1 X 3.1

Consider the following three data points:

x fx)

3.1 0.32258065
3.5 0.28571429
3.9 0.25641026

Fit the quadratic polynomial, P,(X) =a, + a X+ azxz, to the three data points by the direct
fit method.:

0.32258065 = a, +a,(3.1) + a,(3.1)°
0.28571429 = a, +a,(3.5) +a,(3.5)°
0.25641026 = a_ + &,(3.9) +a,(3.9)°

Solving for a,, a;, and a; by Gauss elimination gives

P,(x) =0.86470519 — 0.24813896 x + 0.02363228 x°
3.9

| = [(0.86470519) X+ % (~0.24813896) x° + % (0.02363228) xﬂ

3.1

| =0.22957974

The erroris Error =0.02363228 —0.22957444 = 0.00000530

Page 15 of 30



Numerical Analysis Unit-4: Numerical Differentiation & Integration

Newton-Cotes Formulas

The direct fit polynomial procedure requires a significant amount of effort in the evaluation
of the polynomial coefficients. When the function to be integrated is known at equally spaced
points, the Newton forward-difference polynomial can be fit to the discrete data with much
less effort. The resulting formulas are called Newton-Cotes formulas.

Each choice of the degree n of the interpolating polynomial yields a different Newton-Cotes
formula. The next table the more common formulas. Higher-order formulas have been
developed, but those presented in the table are sufficient for most problems in engineering
and science. The rectangle rule has poor accuracy, so it is not considered further. The other
three rules are developed in this section.

n Formula

0 Rectangle rule
| Trapezoid rule
2 Sumpson’s 1/3 rule
3 Simpson’s 3/8 rule

The Trapezoid Rule

The trapezoid rule for single interval is obtained by fitting a first-degree polynomial to two
discrete points, as illustrated in the figure below.

f(x) W

//-‘
P, (X) ~
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M=%mg+m

The composite trapezoid rule is obtained by applying Al over all the intervals of interest.
Thus,

n-1 n-1 1
| => Al => =h (f; + f,)
i=0 i=0 2

where hi = Xiz1 — X. This equation does not require equally spaced data. When the data
are equally spaced, the equation can be further simplified to:

I =%h(f0+2f1+2f2+ ..... +2f ,+ 1)

where AX. = AX = h = constant.

The Global Error of the Trapezoid rule is 0(h’).

Example: The Trapezoid rule.

Solution: for the same function

E

; .
. f(x)=1/x

X )
3.1 [ 0.32258065
3.2 | 0.31250000
3.3 | 0.30303030
3.4 | 0.29411765
3.5 | 0.28571429
3.6 | 027777778
3.7 | 0.27027027
3.8 | 0.26315789
3.9 | 0.25641026

I=[f(x)dx

e
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Solving the problem for the range of integration consisting of only one interval of h=0.8 gives

I(h=0.8)= %(0.32258065 +0.25641026) = 0.23159636

Let's break the total range of integration into two intervals h=0.4 and apply the composite
rule. Thus,

I(h=0.4) = 0—; [0.32258065 + 2 (0.28571429) + 0.25641026 ] = 0.23008389

For four intervals of h=0.2, the composite rule yields

I(h=0.2) = 0422[0.32258065 +2(0.30303030 +0.28571429 +0.27027027)
+0.25641026] = 0.22970206

Finally, for eight intervals of h=0.1,

I(h=0.1) = %[0.32258065 +2(0.31250000 +......... +0.26315789)
+0.25641026] = 0.22960636

Recall that the exact answer is 1=0.22967444.

The results are tabulated in the following table, which also presents the errors and the ratios
of the errors between successive interval halvings,

E(h) _ 0(h*) _ 92
E(h/2) 0(h/2)?

Ratio=

a

h I Error Ratio
0.8 0.23159636 —0.00202192

3.97
0.4 0.23008389 —-0.00050945

3.99
0.2 0.22970206 -0.00012762

4.00
0.1 0.22960636 —0.00003192
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Simpson's 1/3 Rule

Simpson's 1/3 rule is obtained by fitting a second-degree polynomial the three equally spaced
discrete points, as illustrated in the figure below.

f i
) =

|

Al:%huo+4n+fg

The composite Simpson's 1/3 rule for equally spaced points is obtained by applying Al over
the entire range of integration. Note that the total number of increments must be even. Thus,

I:%h(fo+4fl+2f2+4f3+2f4+ ......... +4f ,+f)

The Global Error of the Simpson's 1/3 rule is 0(h’).
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Example: Simpson's 1/3 rule.
Solution: for the same function

I 3

i .
® f(x)=1/x

X f(x)

I = [f(x)dx 3.1 || 0.32258065
3.2 || 0.31250000
3.3 || 0.30303030
3.4 | 0.29411765
3.5 || 0.28571429
3.6 | 0.27777778
3.7 || 0.27027027
3.8 || 0.26315789
3.9 || 0.25641026

—

Solving the problem for two increments of h=0.4, the minimum permissible number of
increments for Simpson's 1/3 rule, and one interval yields

I(h=0.4) = 0—;1 [0.32258065 + 4 (0.28571429) + 0.25641026 | = 0.22957974

Breaking the total range of integration into four increments of h=0.2 and two intervals and
applying the composite rule yields,

I(h=0.2) = %2[0.32258065 +4(0.30303030) + 2(0.28571429) + 4(0.27027027)
+0.25641026] = 0.22957478

Finally, for eight increments of h=0.1, and four intervals,

I(h=0.1) = %‘1[0.32258065+ 4(0.31250000 + 2(0.30303030 + 4(0.29411765
+2(0.28751429 + 4(0.27777778 + 2(0.27027027)
+4(0.26315789 +0.25641026 = 0.22957446

Recall that the exact answer is 1=0.22967444.

The results are tabulated in the following table, which also presents the errors and the ratios
of the errors between successive increment sizes.
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E(h) _ O(h) _._
E(h/2) 0(h/2)*

Ratio=

h I Error Ratio
0.4 0.22957974 —0.60000530

15.59
0.2 0.22967478 —0.06000034

15.45
0.1 0.22957446 —0.00000002

Simpson's 3/8 Rule

Simpson's 3/8 rule is obtained by fitting a third-degree polynomial the four equally spaced
discrete points, as illustrated in the figure below.

Fy
f(X) pa{x) e

Al :gh(f0 +3f, +3f, + f,)

The composite Simpson's 3/8 rule for equally spaced points is obtained by applying Al over
the entire range of integration. Note that the total number of increments must be a multiple of
three. Thus,

I=gh(f0+3f1+3f2+2f3+3f4+ ......... +3f, ,+ 1)

The Global Error of the Simpson's 1/3 rule is 0(h’).
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Simpson's 1/3 rule and Simpson's 3/8 have the same order, 0(h®). As a matter of fact Simpson's
1/3 rule is practically more accurate than Simpson's 3/8 rule. In view of this result, what use,

if any, is Simpson's 3/8 rule? Simpson's 3/8 rule is useful when the total number of increments

is odd. Three increments can be evaluated by the 3/8 rule, and the remaining even number of
increments can be evaluated by 1/3 rule.

Extrapolation and Romberg Integration (Error calculation)

When extrapolation is applied to numerical integration by the trapezoid rule, the result is
called Romberg integration.

When the functional form of the error of a numerical algorithm is known, the error can be
estimated by evaluating the algorithm for two different increment sizes. The error estimate
can be used both for error control and extrapolation. Recall the error estimation formula,
written for the process of numerical integration, that is with f(h) = I(h). Thus,

Error(h/R) =

1
5 (f(h/R)= (1)

Where R is the ratio of the increment sizes and n is the global order of the algorithm. The
extrapolation formula is given by

Extrapolated value = f (h/R)+ Error(h/R)

Recall the composite trapezoid rule

Izéh(fo+2f1+2f2+ ..... +2f ,+ 1)

It can be shown that the error of the composite trapezoid rule has the functional form
Error=C,h* +C,h* +C,h® +......

Thus, the basic algorithm is 0(h’), so n=2. The following error terms increases in order of an
increments of 2.

Let's apply the trapezoid rule for a succession of smaller and smaller increment sizes, where
each successive increment size is one-half of the preceding increment size. Thus,

R=h/(h/2)=2. Applying the error estimation formula gives

= {1h/2) -1 (0]

Error(h/2) = o
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For the trapezoid rule itself, n=2, and the last equation becomes

Error(h/2) :%[I (h/2)-1(h)]

This equation can be used for error estimation and error control.

Applying the extrapolation formula for R=2 gives
Extrapolaed value = f (h/2) + Error(h/2) + 0(h*) +......

And this clearly illustrates that the result obtained by extrapolating the 0(h’) trapezoid rule is
oh’).

If two extrapolated O(h’) values are available, which requires three O0(h’) trapezoid rule result,
those two values can be extrapolated to obtain an 0(h®) value by applying the Error(h/R)
equation with n=4 to estimate the 0(h’) error, and adding that error to more accurate 0(h’)
values.

Example: Romberg integration.

Solution: Let's apply extrapolation to the results obtained earlier, in which the trapezoid rule
is used.

Recall that the exact answer is 1=0.22967444. h ‘ /

0.8 0.23139636

Substituting I(h=0.8) and I(h=0.4) yields 0.4 0.23008389

Error(h/2) = %[I (h/2)=1(h)] 0.2 022970206

0.1 0.22960636

Error(h/2) = %[0.23008389 —0.23159636] = —0.00050416

Extrapolated value = f (h/2) + Error(h/2)
Extrapolated value = 0.23008389 + (—0.00050416) = 0.22957973
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Repeating the procedure for the h=0.4 and h=0.2 results gives

Error (h/2) =%[| (h/2) = 1(h)]

Error(h/2) = %[0.22970206 —0.23008389] = —0.00012728

Extrapolated value = f (h/2) + Error(h/2)
Extrapolated value = 0.22970206 + (—0.00012728) = 0.22957478

Both extrapolated values are 0(h4). Substituting the two 0(h4) extrapolated values with n=4,
gives an Error of

1
2" -1
1
2 -1

Error(h/2) = [1(h/2)-1(h)]

Error(h/2) = [0.22957478 —0.22957973] = —0.00000033

Extrapolated value = f(h/2) + Error(h/2)
Extrapolated value = 0.22957478 + (—0.00000033) = 0.22957445

These results, and the results of one more application of the trapezoid rule and its associated
extrapolations, are presented in the next table.

The 0(h4) results are identical to the results for the 0(h4) Simpson's rule. The second 0(h6)
result agrees with the exact value to eight significant digits.

h 1, 0(hH) Error oA Error 0(k%)

0.8 0.23159636
—-0.00050416 (.22957973

04 0.23008389 =0.00000033 0.22557445
—0.00012728 0.22957478

0.2 0.22970206 ' —0.00000002 (.22557444

—0.00003190 0.22957446
0l 0.22960636
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Multiple Integrals

The numerical integration formulas developed in the preceding sections for evaluating single
integrals can be used to evaluate multiple integrals. Consider the double integral:

| = f (X, y)dxdy

O C— O
D ) T

This equation can be written in the form:

|=j Uf(x,y)dx}dy:jF(y)dy

where

b
F(y) = j f(x y)dx y = constant

The double integral is evaluated in two steps:

1. Evaluate F(y) at selected values of y by any numerical integration formula.

2. Evaluate | = J F(y)dy by any numerical integration formula.

If the limits of integration are variable, as illustrated in the next figure, that must be accounted

for.

b
Fly) = f f(x.y)dx

a
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Example: Double integral.

0.6 3.0

Evaluate the double integral I I f (X, ¥)dXdy where fix,p) is given by the following table:
02 15
y 0.1 0.2 0.3 0.4 0.5 0.6
0.5 0.165 0.428 0.687 0.942 1.190 1.431
1.0 0.271 0.640 1.003 1.359 1.703 2.035
1.5 0.447 0.990 1.524 2.045 2.549 3.031
2.0 0.738 1.568 2.384 3.177 3.943 4.672
2.5 1.216 2.520 3.800 5.044 6.241 7.379
3.0 2.005 4.090 6.136 8.122 10.030 11.841
3.5 3.306 6.679 9.986 13.196 16.277 19.198

Use Trapezoidal rule to integrate w.r.t. (x) and Simpson's 1/3 rule to integrate w.r.t. (y):

3.0
I, 0, =021 f(xy)dx=
5

1

3.0
f(x,0.2) dx

15

| —D(f +2f, +2f,+ f,)

y:0.2_2 1 2 3 4

y:

| o = O—; [0.990 + 2(1.568) + 2(2.520) + 4.090] = 3.3140

3.0 3.0
|05 =03: [ (x0.3)dx = [ f(x,0.3)dx
15 15

o3 = % [1.524 + 2(2.384)+ 2(3.800) + 6.136] = 5.007

By the same way we get:

|, 0, =66522 1, =82368 I 5, =97435

Now Accumulate these Integrations w.r.t. (y) using Simpson's 1/3 rule:

0.6
j f(x,y)dy= 0?'1 [3.314 + 4(5.007) + 2(6.6522) + 4(8.2368) + 9.7435] = 2.6446
0.2
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Example: Double integral.

Solution: to illustrate double integral with variable limits of integration, let's calculate the

mass of water in a cylindrical container which is rotating at a constant angular velocity M,
as illustrated in the figure below, a meridional plane view through the axis of rotation is
presented also. From a basic fluid mechanics analysis, it can be shown that the shape of the

free surface is given by

Z(r) = A+Br s (D)

From measured data, z(0)=z; and z(R)=z;. Substituting these values into Eq. (1) gives

(z,-1,)
Z(r)=21+#r2 )

22
""""" TT 2"
il
0 r 0 R r
(a) Physical arrangement. (b) Meridional plane view.

In a specific experiment, R=10.0 cm, z;=10.0 cm, and 7,=20.0 cm. In this case Eq. (2) gives

z(r)=10+0.1r ettt e (3)

Let's calculate the mass of the water in the container at this condition. The density of water is

p=1.0g/cm®. Due to axial symmetry in the geometry of the container and the height
distribution, the mass in the container can be expressed in cylindrical coordinates as

m=jdm=Ipz(r)(2nrdr>=2npi[z1+%rﬂ e
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Numerical Analysis

which has the exact integral

m = 7Z'p|:21 R? +@ Rz} e e et e (5)

Substituting the specified values of P, R, 7, and z, into Eq. (5) yields

m =1500 7 grams = 4712.388980 g

To illustrate the process of numerical double integration, let's solve this problem in Cartesian
coordinates. The figure below illustrates a discretized Cartesian grid on the bottom of the

container. In Cartesian coordinates, dA = dX dy, and the differential mass in a differential
column of height z(r) is given by
dm=pz(r)dA (6)

Substituting Eq. (2) into Eq. (6), where r’=x*+ y2, and integrating gives
m=[dm = p”[z1 (2, - 2) (X +y)RZ|dXAY o )

Substituting the specific values of P, R, Z,, and , into Eq. (7) gives

m:1.0”[10+0.1(x2+y2)]dxdy (8)
y. yn
RI—=1] R
Y
— (AX)inal

Ximax

Y

0 R X 0 X(y) R X
(b) Relationship of X and ¥.

L 4
o

(a) Discretized gnid.
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Due to symmetry about the x and y axis, Eq. (8) can be expressed as

R [ x(y)

n-a@0)[{ [ ho+016¢+y))ox y=4[FGey 9

where F ()_/) is defined as

X

_ () _,
er:j[m+au%+y)hx SO 7))

;’ and X(Y) are illustrated in the above figure. Thus,

X = (RE =Y ) 2 oo

Let's discretize the y-axis into 10 equally spaced increments with Ay =1.0 CM. For each

, let's discretize the x-axis into (imax(y)—1) equally spaced increments with AX =1.0cm,

with a final increment (AX) gna between x = (i max(y —1) —1) AX and X(Y). The resulting
geometrical parameters are presented in the following table.

J ¥, cm x(y), em imax(y)  x(imax(¥)) (Axfinal
i 0.0 10.000000 11 10.0 0.006000
2 1.0 9.949874 10 9.0 0.949874
3 2.0 9.797959 10 9.0 0.797959
4 3.0 9.539392 10 9.0 0.539392
S 4.0 9.165151 10 9.0 0.165151
6 50 8.660254 9 8.0 0.660254
7 6.0 8.000000 9 8.0 0.000000
8 7.0 7.141428 8 7.0 0.141428
9 8.0 6.000000 7 6.0 0.000000

10 9.0 4.358899 5 4.0 0.358899

11 10.0 0.000000 1 0.0 0.000000

The values of F (;’) , defined in Eq. (10), are evaluated by the trapezoid rule. As an example,
consider j=6 for which §/ =5.0 ecm. Equation (10) becomes
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FEO= [10+016¢+29)]dx = [FOOdX oo (12)

The following table presents the integrand F(x) of Eq. (12).

=50
Integrating Eq. (12) by trapezoid rule gives ' em
i F(x) i F(x)

F(5.0) = 10 [12.500 + 2 (12.600 +12.900 +13.400 +14.000 1 ~ 12500 6 15.000
2 2 12600 7 16.100
+15.000 +16.100 +17.400) +18.9] 3 1290 8 17.400
0.660254 4 13.400 9 18.900
+——27(18.900 + 20.000) =130.041941 5 14100 10 20.000

Repeating this procedure for every value of ;l in the geometrical parameters table yields the
results presented in the table below.

\/

Values of F(3) D\

J  ¥em F(y) j Y, em F) 1

o

1 00 133500000 7 60  126.000000 =e
2 10 133492600 8 7.0  118.664426 ]
320 133410710 9 80  105.700000 b2
4 30  133.068144 10 90  81.724144 ~4

5 40 132128255 11 100 0.000000 ¥
6 50 130041941

Integrating Eq. (9) by the trapezoid rule, using the values of F (y) yields

m = 4.0% [133.500+2(133.492600+133.410710+133.068144+132.128255

+130.041941+126.000000+118.664426+105.700000+ 81.724144)
+0.000000] = 4643920883 g

The error is Error=4643.920883-4712.388980=-68.468047 g.
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Numerical Analysis Unit-5: Interpolation and Curve Fitting

Unit-5: Interpolation and Curve Fitting

The Figure below illustrates a set of tabular data in the form of a set of [x, f(x)] pairs. The
function f(x) is known at a finite set (actually eight) of discrete values of x. The value of the
function can be determined at any of the eight values of x simply by a table lookup. However,
a problem arises when the value of the function is needed at any value of x between the discrete
values in the table. The actual function is not known and cannot be determined form the
tabular values. However, the actual function can be approximated by some known function,
and the value of the approximating function can be determined at any desired value of x. This
process, which is called interpolation, is the subject of this Chapter. The discrete data of the

figure below are actually values of the function f(x)=1/x.

In many applications, the values of the discrete data at the specific points are not all that
is needed. Values of the function at points other than the known discrete points may be needed
(i.e., interpolation). The derivative of the function may be required (i.e., differentiation). The
integral of the function may be of interest (i.e., integration). These processes are performed
by fitting an approximating function to the set of discrete data and performing the desired
process on the approximating function.

X f(x)
3.20 {0.312500
f(x) 3.30 1 0.303030
3.35 | 0.298507
3.40 ]| 0.294118
3.50 | 0.285714
1 3.60 0277778
3.6540.273973
. 3.7010.270270

y \ y y

i P
» L

.
i

(a) x (b X (© X

a) interpolation b) differentiation C) integration
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Many types of approximating functions exist. In fact, any analytical function can be used as
an approximating function. Three of the more common approximating functions are:

1. Polynomials.
2. Trigonometric functions.
3. Exponential functions.

Approximating functions should have the following properties:

The approximating function should be easy to determine.
It should be easy to evaluate.

It should be easy to differentiate.

It should be easy to integrate.

N~

Polynomials satisfy all four of these properties. Consequently, polynomial approximating
functions are used here to fit sets of discrete data for interpolation, differentiation, and

integration.
There are two fundamentally different ways to fit a polynomial to a set of discrete data:

1. Exact fits.
2. Approximate fits.

An exact fit yields a polynomial that passes exactly through all of the discrete points, as
illustrated in the figure below. This type of fit is useful for small sets of smooth data. An
approximate fit yields a polynomial that passes through the set of data in the best manner
possible, without being required to pass exactly through any of the data points. Approximate
fits are useful for large sets of smooth data and small or large sets of rough data.

11 f
y Y
ot L
Polynomial Polynomial
®
e Discrete points e Discrete points
() X (b) x

Polynomial approximation. (a) Exact fit. (b) Approximate fit,
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Direct Fit Polynomials

First let's consider a completely general procedure for fitting a polynomial to a set of equally

spaced  or unequally  spaced data. Given n+l sets of data
[0, F O] Xy £ D] ooy [X, F (X)), which  will  be  written  as (%, f,),
(X, f)s e ,(X,, T.), determine the unique nth-degree polynomial P,(x) that passes

exactly through the n+1 points:

P.(X)=a, +a, X+a, X* +......... F A, X" e )

For simplicity of notation, let f(x)="1,. Substituting each data point into  Eq. (1) yields
n+1 equations:

fo=a +a X, +a,X,° +.oeers FA X" e, (2.0)
fi=a,+a X +a,%X  +o. FA X" e, (2.1)
fo=a +a, X, +a,X +..... F A X" e (2.n)

There are n+l linear equations containing the n+1 coefficients ay to a,. Equation (2) can be
solved for a, to a, by Gauss elimination. The resulting polynomial is the unique nth-degree
polynomial that passes exactly through the n+1 data points. The direct fit polynomial
procedure work for both equally spaced data and unequally spaced data.

Example: Direct fit polynomials.

Solution: To illustrate interpolation by a direct fit polynomial, consider the simple function

y = f(X) =1/ X, and construct the following set of six significant figure data:

x Jx)
3.35 0.298507
3.40 0.294118
3.50 0.285714
3.60 0.277778

Let's interpolate for y at x = 3.44 using linear, quadratic, and cubic interpolation. The exact
value is

1
3.44) = f(3.44) = ——— = 0.290698...
y(3.44) = 1(344) = 7
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Let's illustrate the procedure in detail for a quadratic polynomial:

P,(X)=a+bx+cx?

To center data around x = 3.44, the first three points are used. Applying P,(x) at each of these
data points gives the following three equations:

0.298507 = a+b(3.35) + ¢ (3.35)°
0.294118 = a + b (3.40) + ¢ (3.40)°
0.285714 = a +b(3.50) + ¢ (3.50)?

Solving theses three equations for a, b, and ¢ by Gauss elimination without scaling or pivoting
yields

P,(x) = 0.876561—0.256080x + 0.0249333x’

Substituting x = 3.44 in the polynomial gives
P, (3.44) = 0.876561— 0.256080(3.44) + 0.0249333(3.44)* = 0.290697

The error is Error(3.44) = P,(3.44) — f (3.44) = 0.290697 — 0.290698 = —0.000001.

For alinear polynomial, use x = 3.4 and 3.5 to center that data around x = 3.44. The resulting
linear polynomial is

P,(X) = 0.579854 — 0.0840400 X

Substituting x = 3.44 in the polynomial gives P,(3.44) =0.290756

For cubic polynomial, all four points must be used. The resulting cubic polynomial is

P,(x) =1.121066- 0.470839x + 0.0878000x° —0.00613333x°

Substituting x = 3.44 in the polynomial gives P;(3.44) =0.290698 .
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The results are summarized below, where the results of linear, quadratic, and cubic
interpolation and the errors, Error(3.44) = p, (3.44)—0.290698 , are tabulated. The
advantages of higher-degree interpolation are obvious.

P(3.44) = 0.290756  Linear interpolation Error =0.000058
=(0.290697  Quadpratic interpolation =-0.000001
=(0.290698  Cubic interpolation =0.000000

The main advantage of direct fit polynomials is that the explicit form of the approximating
function is obtained, and the interpolation at several values of x can be accomplished simply
by evaluating the polynomial at each value of x. The work required to obtain the polynomial
does not have to be redone for each value of x. A second advantage is that the data can be
unequally spaced.

The main disadvantage of direct fit polynomials is that each time the degree of the
polynomial is changed, all of the work required to fit the new polynomial must be redone.

Direct Multivariate Polynomial Approximation

Many problems arise in engineering and science when the dependent variable is a function of
two or more independent variables, for example, 7 = f(x.y) is a two variable or bivariate,
function. Such functions in general called multivariate functions. When multivariate function
is given by tabular data, multivariate approximation is required for interpolation,
differentiation, and integration.

Consider the bivariate function, z = f(x.y), and the set of tabular data presented in the
following table. The tabular data can be fit be a multivariate polynomial of the form

z=f(x,y)=a+bx+cy+dxy+ex’ + fy> + gx’y + hxy® +ix’ + jy* +.......

The number of data points must equal the number of coefficients in the polynomial. A linear
bivariate polynomial in x and y is obtained by including the first four terms in the equation. A
quadratic bivariate polynomial in x and y is obtained by including the first eight terms in the
equation. The number of terms in approximating polynomial increases rapidly as the degree
of approximations increases. This leads to ill-conditioned systems of linear equations for
determining the coefficients. Consequently, multivariate high-degree approximation must be
used with caution.
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Example: Direct multivariate linear interpolation.

Solution: Consider the following values, use direct multivariate linear interpolation to
calculate z(x,y) = z(1100, 1225),

X

y 800 1000 1200
1150 13804  1500.2 1614.5
1200 1377.7  1499.0  1613.6
1250 1375.2 1497.1 1612.6

The form of the approximating polynomial is

z=1(x,y)=a+bx+cy+dxy

Substituting the four data points that bracket x = 1100 and y = 1225 into the polynomial gives

1499.0 = a + (1000) b + (1200) ¢ + (1000) (1200) d
1497.1= a + (1000) b + (1250) ¢ + (1000) (1250) d
1613.6 = a + (1200) b + (1200) ¢ + (1200) (1200) d
1612.6 = a + (1200) b + (1250) ¢ + (1200) (1250) d

Solving for a, b, ¢, and d by Gauss elimination yields

z = f(x,y)=1079.6 + 0.4650x — 0.1280y + 0.0900x 10> xy

Substitute x = 1100 and y = 1225 in the approximating polynomial gives (1100, 1225)=
1555.5. The error in this result is Error=15555-1556.0=-0.5. The advantage of this
approach is that we can use the same approximating polynomial to evaluate other values of
z2(x,p),if required, without reevaluating the polynomial coefficients.
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Least Squares Approximation

An approximate fit yields a polynomial that passes through the set of points in the best possible
manner without being required to pass exactly through any of the points. Several definitions
of best possible manner exist. Consider the set of discrete points, [Xi Y (X )] =(X,Y,), and
the approximate polynomial y(x) chosen to represent the set of discrete points, as illustrated
in the figure below. The discrete points do not fall on the approximating polynomial. The
deviations (i.e., distances) of the points from the approximating function must be minimized
in some manner.

y(x)
Yi(x;)

Y

If the values of the independent variable x; are considered exact, then all the deviation is
assigned to the dependent variable Y, and the deviation e; is the vertical distance between Y;

and yi=f(x;). Thus,
e =Y -V,

1t is certainly possible that the values of Y; are quite accurate, but the corresponding values
of x; are in error. In that case, the deviation would be measured by the horizontal distance
illustrated in the above figure. If x; and Y; both have uncertainties in their values, then the
perpendicular distance between a point and the approximating function would be the
deviation. The usual approach in the approximate fitting of tabular data is to assume that the
deviation is the vertical distance between a point and the approximating function, as specified
by the above equation.
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Unit-5: Interpolation and Curve Fitting

Several best criteria are illustrated in the next figure for a straight-line approximation. From
the figure we can see that the least squares criteria, in which the sum of the squares of the
deviations is minimized. The least squares procedure yields a good compromise criterion for

the best fit approximation.

y(*)h
Y(x)

(a) .

y(x) |
Y(X) (el)max

{c) .

y(x)
Y(x)

(b)

y(x)
Y(x)

Best fit criteria. (a) Minimize Zei . (b) Minimize Z|ei| . (¢) Minimax. (d) Least squares.

The Straight-Line Approximation

The simplest polynomial is a linear polynomial, the straight lint. Least squares straight line
approximations are an extremely useful and common approximate fit, which is determined as
follows. Given N data points, (x;,Y;), fit the best straight line through the set data. The

approximating function is

e =Y -y (=L N)
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Numerical Analysis Unit-5: Interpolation and Curve Fitting

The sum of the squares of the deviations defines the function S(a,b):
N N

S(a,b) = Z‘,(ei)2 :Z(Yi - a_bxi)2
i=1 i=1

The function S(a,b) is a minimum when 0S/0da =0S/0b=0. Thus,

oS O

5:iZl:Z(Yi —a-bx)(-1)=0

O B (2)
%ZEZ(Yi _a_bxi)(_xi):0

Dividing Eq. (2) by 2 and rearranging yields

aN quZN:xi :ZN:Yi
" i=1 N i=1 N
ay x,+bY x =>xY,
i=1 i=1 i=1

Which is called the normal equations of the least squares fit. They can be solved for a and b
by Gauss elimination.

Example: Least squares straight line approximation.

Solution: Consider the constant pressure specific heat for air at low temperatures presented
in the following table, where T is the temperature and C, is the specific heat. Determine a
least squares straight line approximation for the set of data:

T ’ 300 400 500 600 700 800 900 1000
G ‘].0045 1.0134 1.0296 1.0507 1.0743 1.0984 1.1212 1.1410

Cp =a+bT

Page 10 of 16



Numerical Analysis Unit-5: Interpolation and Curve Fitting

For this problem the equation becomes

8a+bZS:Ti = ZSZCIELi
i=1

i=1

agTi erZ:Ti2 :jleicp‘i

Evaluating the summations and substituting into the above equations gives

8a+5200b =8.5331
5200a + 3,800,000b = 5632.74

Solving for a and b be Gauss elimination without scaling or pivoting yields

C, =0.933194 + 0.205298 x 10°T

Substituting the initial values of T into this equation gives the results presented in the next
table and figure, which presents the exact data, the least squares straight line approximation,
and the percent error. The straight line is not a very good approximation of the data.

LK Cp evmcr o appron Error, % 145}
300 1.0045 0.9948 -097 x
400 | 10134 1.0153 0.19 5 b
500 | 1.0296  1.0358 0.61 3
600 | 10507  1.0564 0.54 i
7 10743 1.0769 0.24 g sl é
%00 | 1.0984  1.0974 —0.09 4 4
900 | 10212 L1180 ~029
1060 | 1.1410  1.1385 —0.22 100 g
B 0 500 00

Temperature T, K
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Numerical Analysis Unit-5: Interpolation and Curve Fitting

High-Degree Polynomial Approximation

Given the N data points, (x;,Y)), fit the best nth-degree polynomial through the set of data.
Consider the nth-degree polynomial:

y=a,+a, X+a, X +..... +a_ X"

The sum of the squares of the deviation is given by
3 2 N ny2
S(aolai""’an):Z(ei) :Z(Yi_ao_alxi_""_an X; )
i=L i=L

The function S(8g,8y,...,8,) is a minimum when

N N N
a,N+a, ) X +..+a, > X" =DV,
i=1 i=1 i=1
N N 1 N ) N
n n+ n n
8, Y X A ) X A, Y X = %Y,
i=1 i=1 i=1 i=1

And this can be solved for a, to a, by Gauss elimination.

Example: Least squares quadratic polynomial approximation.
Solution: Determine a least squares quadratic polynomial approximation for this set of data:

X ‘ 1000 1500 2000 2500 3000
Y ‘].]410 1.2095 1.2520 1.2782 1.2955

y=a+bx+cx?
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Numerical Analysis Unit-5: Interpolation and Curve Fitting

For this problem the polynomial becomes
aN+bY x +cd) x*=>,

aY x+b> x +cd x = xY,
aY x> x +ed x =>"xY,

Or may be represented in matrix form

N Y x >x'|[a DY,
x>t Dk Ibl=] DIxY,
xS lel D%,

5 10x10° 22.5%10° a 6.1762
10x10%® 22.5x10° 55x%10° b|=| 12.5413x10°
225x10° 55x10° 142.125x10% || c 288.5186 x10°

Solving for a, b, and ¢ by Gauss elimination yields

y =0.965460+0.211197x10°x —0.0339143x10° x*

Substituting the initial values of x into the approximating polynomial gives the results
presented in the next table and figure. The quadratic polynomial is a reasonable
approximation of the discrete data.

13

?\ K- Y [ W ] y FA b1 EITOT. n"
00 | 1.1410 1.1427 0.15
1500 | 1.2098 1.2059 —0.29
2000 | 1.2520 1.2522 0.02 2
2500 | 1.2782 1.2815 0.26
000 | 1.2955 1.2938 —0.13

1 L L
1000 2000 3000
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Numerical Analysis Unit-5: Interpolation and Curve Fitting

Multivariate Polynomial Approximation

Many problems arises in engineering and science where the dependent variable is a function
of two or more independent variable, for example, 7 = f(x,y) is a two-variable, or bivariate,

function.
Given the N data points, (x;, y;, Z;), fit the best linear bivariate polynomial through the set of

data. Consider the linear polynomial:
Z=a+bx+cy

The sum of the squares of the deviations is given by
S(a,b,c) = Z:(ei)2 = Z(Zi _a_bxi _Cyi)2

The function S(a,b,c) is a minimum when

%zzz(zi _a—bx, —cy,)(-) =0
& =T 2(2,-a-bx —cy)(-x) =0
Z_E:zz(zi—a—bxi—cyi)(—yi)=o

Dividing by 2 and rearranging yields the normal equations:
N N N
aN+b) x +cd y,=> 7,
i=1 i=1 i=1
N N N N
ay X +b> x +cd Xy, =D %Z,
i=1 i=1 i=1 i=1
N N NG W
az Yi +bzxi Yi +CZYi = ZYi Z;
i=1 i=1 i=1 i=1

Which can be solved for a, b, and ¢ by Gauss elimination.

A linear fit to a set of bivariate data may be inadequate. Consider the quadratic bivariate

polynomial:

Z=a+bx+cy+dx®+ey’+fxy
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Numerical Analysis Unit-5: Interpolation and Curve Fitting

The sum of the squares of the deviations is given by
S(ab,c,d,e, f)=> ()" =D.(Z,—a—bx; —cy, —dx” —ey,” - f x;y,)’

The function S(a,b,c,d,e,f) is a minimum when

%:ZZ(Zi —a—hx —cy, _dxi2 _eyi2 - fxy)(=1)=0
0S 2 2
a_fzzz(zi —a—bx; —cy; —dx;" —ey;” — fxy,)(=%y;)=0

Dividing by 2 and rearranging yields the normal equations:

aN+bY x4+ Yy, +d Y X +e> y + > xy, =D Z,

aY x+bY x +e Y xy, +d Y x +ed xy + Y XY =D % Z,

aY y b xy +e ) Y +d Y Xy +ed YT+ Y xy =Dy Z,

ad x +b Y x4+ %y +d DI x +ed Xy + foi?'yi =>'%°Z,

ad y +b> xy e Yy +d D Xy ey Y xy =Dy Z,

aY xy, +bY x7y +e > xy +d > kY + e x v Y%y =Y Xy, Z,

Which can be solved for a to f by Gauss elimination.

Example: Least squares quadratic bivariate polynomial approximation.

Solution: Consider the following values, use Least squares quadratic bivariate polynomial to
calculate z(x,y) = z(1100, 1225),

X

y 800 1000 1200
1150 13804  1500.2 1614.5
1200 1377.7  1499.0  1613.6
1250 1375.2 1497.1 1612.6

The form of the approximating polynomial is

z=a+bx+cy+dx®+ey’+fxy
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N in Zyi inz Z)’i2 inyi
in inz in)’i ina ZXiYiZ inzyi
PRTEEDIE DI D I S M 3 47,
inz ins inzyi in4 Z:XiZYi2 in3Yi
PRI ST 35 D 3 'S D 3 A 3 Y

_inyi zxizyi ZXiYi2 insyi inyis zxizyiz_
Evaluating the summation and substituting in the matrix yields
9EO 10.800E3 9.000E3 12.975E6 9.240E6
10.800E3 12.975E6 10.800E6 15.606E9 11.088E9
9.000E3 10.800E6 9.240E6 12.975E9 9.720E9
12.975E6 15.606E9 12.975E9 18.792E12 13.321E12
9.240E6 11.088E9 9.720E9 13.321E12 10.450E12
10.800E6 12.975E9 11.088E9 15.606E12 11.664E12
[13.4703E3]
16.1638E6
13.6118E6
~|19.4185E9

141122 E9

16.3337E9|

A problem arises for high-degree polynomials. The coefficients in the matrix are varying over
a range of several orders of magnitude, which gives rise to ill-conditioned system.
Normalizing each equation helps the situation. Double precision calculations are required.

Each raw in the matrix should be normalized by the exponential term in the first coefficient of

Yz, ]
in Z
Zyi Z,
zxizzi
ZYiz Z,

_in)’i Z; |

-~ O 9O O T Q

10.800E6 |
12.975E9
11.088E9
15.606 E12
11.664 E12
13.321E12 |

-~ DO O O T

each raw. Solving the normalized equations by Gauss eliminations yields

z(X, y) = 914.033+0.645500x — 0.020500y — 0.0000775x* — 0.000040y> +0.0000825 xy

Evaluating z(1100, 1225) = 1556.3.

The error is, Error = 1556.3 - 1556.0 = 0.3, which is smaller than the error incurred by

interpolation using direct multivariate linear approximation.
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Numerical Analysis Unit-6: Initial Value Problem

Unit-6: Initial Value Problem

Introduction
A classic example of an initial-value ODE is the general nonlinear first order ODE:

y'=f(y) y(t,) =Y,

This equation applies to many problems in engineering and science. Consider the lumped
mass m illustrated in the figure. Heat transfer from the lumped mass m to its surroundings by
radiation is governed by the Stefan-Boltzmann law of radiation:

o =Aso(T-T7)

where qr. is the heat transfer rate (J/s), A is the surface area of the lumped mass (m’), € is

the Stefan-Boltzmann constant (5.67 % 10° J/m’-K'-s), O is the emissivity of the body
(dimensionless), which is the ratio of the actual radiation to the radiation from a black body,
T is the internal temperature of the lumped mass (K), and T, is the ambient temperature (K)
(i.e., temperature of the surroundings). The energy E stored in the lumped mass is given by

E=mCT

where m is the mass of the lumped mass (kg) and C is the specific heat of the material (J/kg-
K). An energy balance states that the rate at which the energy stored in the lumped mass
changes is equal to the rate at which heat is transferred to the surroundings. Thus,

d(mCT))

- ——q; =—Aso(T*-T})

a

The minus sign is required so that the rate of change of stored energy is negative when T is
greater than T, For constant m and C, the last equation can be written as

d—TzT'z—a(T“—Ta“) where a:_AgO'
dt mC

T(0) =T, Tit) =7

T .
mCT Z_23 , 3,=Acc(T*-TH

Heat transfer by radiation from a lumped mass
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Numerical Analysis Unit-6: Initial Value Problem

Consider the case where the temperature of the surroundings is constant and the initial
temperature of the lumped mass is T(0.0)=T, . The initial-value problem is stated as follows:

T'=—aT*-T})=f(T) TO)=T,

This is a nonlinear first-order initial-value ODE. The solution of this equation is the function
T(t), which describes the temperature history of the lumped mass corresponding to the initial
conditions, T(0.0)=T,.

An example of a higher-order initial-value ODE is given by the nonlinear second-order ODE
governing the vertical flight of a rocket. The physical system is illustrated in the figure.

Applying Newton's second law of motion, Z F =ma, yields
> F=T-Mg-D=Ma=MV'=My"

where T is the thrust developed by the rocket motor (N), M is the instantaneous mass of the
rocket (kg), g is the acceleration of gravity (m/s’), which depends on the altitude y (m), D is
the aerodynamic drag (N), a is the acceleration of the rocket (m/s’), V is the velocity of the
rocket (m/s), and y is the altitude of the rocket (m). The initial velocity, V (0.0) = Vy, is zero,
and the initial elevation, y(0.0) = y,, is zero. Thus, the initial conditions for the equation are

V(0.0) = y'(0.0) =0.0 and y(0.0)=0.0

ZF=T-Mg-D=Ma=MV =My"”
y(0.0)= 0.0 and V(0.0)=0.0
yt)=? and V(t)=?

Vertical flight of a rocket
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Numerical Analysis Unit-6: Initial Value Problem

In general, the thrust T is a variable, which depends on time and altitude. The instantaneous
mass M is given by

M(t):Mo—jr}u(t)dt

where M, is the initial mass of the rocket (kg), and M(t) is the instantaneous mass flow rate
being expelled by the rocket (kg/s). The instantaneous aerodynamic drag D is given by

D(p.V,y)=Cyp (0.V, y)%p(y) AV?

where Cp is an empirical drag coefficient (dimensionless), which depends on the rocket
geometry, the rocket velocity V and the properties of the atmosphere at altitude y (m); P is
the density of the atmosphere (kg/m’), which depends on the altitudey (m); and A is the cross-
sectional frontal area of the rocket (m’).

Combining the last equations yields the following second-order nonlinear initial-value ODE:

1
Co(PV. ), PN AV ’

y"'= F(tt’ y) —-g(y)-

M, - [m(t)dt Mo—jr{n(t)dt

Consider a simpler model where T, M, and g are constant, and the aerodynamic drag D is
neglected. In that case, the last equation becomes

y' = F. g y(0.0)=0.0 and  y'(0.0)=V(0.0)=0.0

M, —mt

The solution of the last two equations is the function y(t), which describes the vertical motion
of the rocket as a function of time t.
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One-Dimensional Initial-Value Ordinary Differential Equations

The initial-value ODEs govern propagation problems, which are initial-value problems in
open domains. Consequently, initial-value ODEs are solved numerically by marching
methods. This section is devoted to presenting the basic properties of finite difference methods

for solving initial-value (i.e., propagation) problems and to developing several specific finite
difference methods.

The objective of a finite difference method for solving an ordinary differential equation
(ODE) is to transform a calculus problem into an algebra problem by:

1. Discretizing the continuous physical domain into a discrete finite difference grid.
2. Approximating the exact derivatives in the ODE by algebraic finite difference
approximations (FDASs).

3. Substituting the FDAs into the ODE to obtain an algebraic finite difference equation
(FDE).
4. Solving the resulting algebraic FDE.

Finite difference approximations

Now that the finite difference grid has been specified, finite difference approximations (FDAs)
of the exact derivatives in the ODE must be developed. This is accomplished using the Taylor
series approach developed in Chapter 4.

In the development of finite difference approximations of differential equations, a
distinction must be made between the exact solution of the differential equation and the
solution of the finite difference equation which approximates the exact differential equation.
For the remainder of this chapter, the exact solution of the ODE is denoted by an overbar on

the symbol for the dependent variable [i.e., y(t) [, and the approximate solution is denoted
by the symbol for the dependent variable without an overbar [i.e., Y(t) J. Thus,

y(t) = exact solution
y(t) = approximate solution

o'
Exact derivatives, such as Y , can be approximated at a grid point in terms of the values of

— w4
Y at that grid point and adjacent grid points in several ways. Consider the derivative Y .

Writing the Taylor series for VM using grid point n as the base point gives

Vo = Yo + Y At +%y"\nAt2 +%y"’\nAt3 +o

Page 5 of 35



Numerical Analysis Unit-6: Initial Value Problem

This equation can be expressed as the Taylor polynomial with remainder:

yn+1 = yn

RS +iy<m) At™ +R™!
m! n

where the remainder R™ is given by

Rm+1 — (m :_l;_l)l y(m+l) (T) Atm+l

where t <7 <t+ At. The remainder term is simply the next term in Taylor series evaluated

at t = T. If the infinite Taylor series is truncated after the m" derivative term to obtain an

n+l

approximation of V', the remainder term R,.; is the error associated with the truncated

Taylor series. In most cases, our main concern is the order of the error, which is the rate at
which the error goes to zero as At — 0,

. . = .
Solving the last equation for Y |n yields

v

y Yo =¥y 1 y”| At — ’”| At? — ...

="

If this equation is terminated after the first term on the right-hand side, it becomes

yn+l yn 1 14
—— At
; A 5 Y ()

’n, can be obtained from

the last equation by truncating the remainder term. Thus,

yn+1 yn
O(At
; A (At)

where O(At) term is shown to remind us of the order of the remainder term, which was
truncated, which is the order of the approximation of )7'|n. The remainder term which has
been truncated to obtain the last equation is called the truncation error of the finite difference
approximation of Y'|n . This equation is a first order forward-difference approximation of y'
at grid point n.

A first order backward-difference approximation of V' at grid point n+1 can be obtained
by writing the Taylor series for Y, using grid point n+1 as the base point and solving for
. Thus,

!

y n+1
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1 ="
Yo =YnatY ‘n+1(_At)+E y ‘ 1(_At2)+ -----
7/ yn+1 yn l V14
— A
y ‘n+1 At 2 y (T) t

Truncating the remainder term yields

Vi

y yn +1 yn O(At)

‘n+1 At

A second-order centered-difference approximation of y' at grid point n +% can be obtained

by writing the Taylor series for Yn. aNd'Y, using grid point n+% as the base point,

subtracting the two Taylor series, and solving for 7'|n+ 1. Thus,
2

Vo= i +7 {ﬂjﬁy" l(§j2+iym{ﬂj3+ ......
n+> n+> 2 2 n+s 2 6 n+> 2

Aty 1, ( AtY 1, ( at)

yn = yn+;+yn+;(—?j+5yn+;(—?j +_yn+;(_7j +......

!
Subtracting the second equation from the first one, and solving for yn+ 1 yields

4 yn +1 yn _ i

N1 Atz
1T A 247 )

<l

Truncating the remainder term yields

! yn+1 yn

0(At)
n+% At ( )

Note that the three (forward-backward-centered) equations of Y' are identical algebraic

expressions. They all yield the same numerical value. The differences in the three finite
difference approximations are the value of the truncation errors.

All the above equations can be applied to steady space marching problems simply by
changing t to x in all the equations.
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Occasionally a finite difference of an exact derivative is presented without its development. In
such cases, the truncation error and order can be determined by a consistency analysis using
Taylor series. For example, consider the following finite difference approximation (FDA):

FDA = Yt~V
At

The Taylor series for the approximate solution y(t) with base point n is
! 1 "At2
Yo = Yo + YoAL+ E Y AL+

Substituting the Taylor series for y,.; into the FDA, yields

n

FDA =

1
=V + VAt +......
AL Yn 2yn

As At -0, FDA — y,; which shows that FDA is an approximation of the exact derivative

Y at grid point n. The order of FDA is 0(At). The exact form of the truncation error relative
to grid point n is determined. Choosing other base points for the Taylor series yields the
truncation errors relative to those base points.

A finite difference approximation (FDA) of an exact derivative is consistent with the
exact derivative if the FDA approaches the exact derivative as At — 0, as illustrated in the

last equation. Consistency is an important property of finite difference approximation of
derivatives.

Finite difference equations

Finite difference solutions of differential equations are obtained by discretizing the continuous
solution domain and replacing the exact derivatives in the differential equation by finite
difference approximations to obtain a finite approximation of the differential equation. Such
approximations are called finite difference equations (FDEs).

Consider the general nonlinear initial-value ODE:

y=fty) v0)=Y,
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! il
Choose a finite difference approximation (FDA), y, for Y . For example:

i yn+1 yn

yn or yn+1 yn+1 yn

At At

Substitute the FDA for Y into the exact ODE, V’ =1, Y), and solve for ypi:

fzyn+1_yn=ft — f
yn At (n’yn) n

y;1+1 = % = f (tn+1 ! yn+1) = fn+1

Solving the first equation for y,.; yields

Yo =Ya AT V) =Ya AT e (D)

Solving the second equation for y,.; yields

Yor = Yo AT (G V) =Y AT i ()

Equation (1) is an explicit finite difference equation, since f, does not depend on y,.;, and it
can be solved explicitly for y,.;. Equation (2) is an implicit finite difference equation, since
fur1 depends on y,.; . If the ODE is linear, them f,.; is linear in y,.; , and it can be solved
directly for y,.1 . If the ODE is nonlinear, then f,.; us nonlinear in y,.; , and additional effort
is required to solve it for y,.;.

Smoothness

Smoothness refers to the continuity of a function and its derivatives. The finite difference
method of solving a differential equation employs Taylor series to develop finite difference
approximations (FDASs) of the exact derivatives in the differential equation. If a problem has
discontinuous derivatives of some order at some point in the solution domain, then FDAs
based on the Taylor series may misbehave at that point.

For example, consider the vertical flight of a rocket illustrated in Figure (I1.6). When the
rocket engine is turned off, the thrust drops to zero instantly. This causes a discontinuity in
the acceleration of the rocket, which causes a discontinuity in the second derivative of the
altitude y(t). The solution is not smooth in the neighborhood of the discontinuity in the second
derivative of y(1).

At a discontinuity, single point methods or extrapolation methods should be employed
since the step size in the neighborhood of the discontinuity can be chosen so that the
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discontinuity occurs at a grid point. Multipoint methods should not be employed in the
neighborhood of a discontinuity in the function or its derivatives.
Problems which do not have any discontinuities in the function, or its derivatives are

called smoothly varying problems. Problems which have discontinuities in the function, or its
derivatives are called non-smoothly varying problems.
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The First-Order Euler Methods

The explicit Euler method and the implicit Euler method are two first-order finite difference
methods for solving initial-value ODEs. Although these methods are too inaccurate to be of
much practical value, they are useful to illustrate many concepts relevant to the finite
difference solution of initial-value ODEs.

The Explicit Euler Method

Consider the general nonlinear first-order ODE:

)_/’ = f (t: )7) y(to) =Yo

Choose point n as the base point and develop a finite difference approximation of this equation
at that point. The finite difference grid is illustrated in the figure, where the cross (i.e., X)
denotes the base point for the finite difference approximation of the equation. The first order

orward-difference finite difference approximation o V’ is given previously b
pp g p y oy

yn+1 yn 1 Vi
—— At
Y A 5 (7)
y s o —
n n+1 |

Finite difference grid for the explicit Euler method

Substituting this equation in the general nonlinear first-order ODE and evaluating f(t,y)
at point n yields

yn+l yn 1 14 — c
—= At = f(t, = f
A 5y (z,) (t,, ¥.) =1,

Solving for Y, ., gives

Vo = Y, +Atf + = y”(r ) At® +Atf +0(At?)
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2
Truncating the remainder term, which is O(At ) , and solving for y,.; yields the explicit
Euler finite difference equation (FDE):

yn+1 - yn + At 1:n O(Atz)

2 . . :
where the O(AL") term is included as a remainder of the order of the local truncation error.
Several features of this equation are summarized below:

The FDE is explicit, since f, does not depend on y,.;.
The FDE requires only one known point. Hence, it is a single point method.
The FED requires only one derivative function evaluation [i.e. f(t,y)] per step.

The error in calculating y,+; for a single step, the local truncation error, is O(Atz) :

SR b~

The global (i.e., total) error accumulated after N steps is O(At). This result is derived
in the following paragraph.

The explicit Euler finite difference equation is applied repetitively to march from the initial
point ty to the final point, ty, as illustrated in Figure (5.6). The solution at point N is

N-1 N-1

Yn =Yoot Z(yn+1 - yn): Yo + ZAyn+1
n=0 n=0

The total truncation error is given by

N-1
Error =y, + Z(% y”(rn)Atzj =N % y"(1) At?

n=0
where ty <7 <t. The number of steps N is related to the step size At as follows:

tN _to
At

Substituting the last equation in the error equation yields

N =

Error = %(tN —t, )y"(z) At = O(At)

Consequently, the global (i.e., total) error of the explicit Euler FDE is 0(At), which is the
same as the order of the finite difference approximation of the exact derivative Y', which is

0(Av), as shown previously.
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The result developed in the preceding paragraph applies to all finite difference
approximations of first-order ordinary differential equations. The order of the global error is

always equal to the order of the finite difference approximation of the exact derivative y'.
The algorithm base on the repetitive application of the explicit Euler FEE to solve initial-
value ODEs is called the explicit Euler method.

Error =y — y(ty)

Repetitive application of the explicit Euler method.

Example: The explicit Euler method

Solution: Let's solve the radiation problem presented earlier using the explicit Euler finite

difference equation. The derivative functionis f(t,T)=—a (T ) —Ta4) . Thus,
T.=T —Ata(T}-T) a=-40x10"12, T, = 250, T, = 2500
Let At =2.0'S_ For the first time step,

f, = —(4.0x1072{2500.0* — 250.0* ) = ~156.234375
T, = 2500.0 + 2.0(—156.234375) = 2187.531250

The results and the result of the subsequent time steps for t from 4.0s to 10.0s are summarized

in the following table. The results for At =1.0s are also presented.
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A T, A
Byl Tyl T Error
0.0 2500.000000 —156.234373
2.0 2187.531250 —901.580490 2248247314 —-60.716064
4.0 2004.37G270 — 64,545606 2074611898 —70.241628
6.0 1875.279058 —49.452290 1944.618413 —69.339355
8.0 1776.374478 —390.813255 1842.094508% —065.720030
10.0 1696.747960 1758.263375 —61.5154006
0.0 2500.000000 —156.234375
1.0 2343.765625 — 120.686999 2360.820988 —17.064363
2.0 2223.078626 —97.680938 2248.247314 —25.168688
30 2125397688 —381.608926 2154.470796 —22.073108
9.0 1768.780668 —39.136553 1798.227867 —29.447199
10.0 1729.644115 1758.263375 —28.619260

Several important features of the explicit Euler method are illustrated in that table. First, the
solutions for both step sizes are following the general trend of the exact solution correctly.
The solution for the smaller step size is more accurate than the solution for the larger step

size. In fact, the order of the method can be estimated by comparing the errors at t = 10.0s.
Thus,

E(At:2.0):%(tN _t,)T"(2)2.0)

E(At=1.0)= %(tN _t,)T"(z)XL.0)

Assuming that the value of T "(T) are approximately equal, the ratio of the theoretical error
Is

Ratio— E(At=2.0) -61515406 _ )
E(At=1.0) -28.629260
The ratio shows that the method is first order. The value of 2.15 is not exactly equal to the
theoretical value 2.0 due to the finite step size. The theoretical value of 2.0 is achieved only in
the limit as At -0 |

Another feature illustrated in the table is that the errors are relatively large. This is due

to the large first-order, O(At), truncation error. The errors are all negative, indicating that
the numerical solution leads to the exact solution. This occurs because the derivative function
f(t,T) decreases as t increases as illustrated in the table. The derivative function in the FDE
is evaluated at point n, the beginning of the interval of integration, where it has its largest
value for the interval. Consequently, the numerical solution leads the exact solution.
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The final feature of the explicit Euler method which is illustrated in the table is that the
numerical solution approaches the exact solution as the step size decreases. This property of
a finite difference method is called convergence. Convergence is necessary for a finite
difference method to be of any use in solving a differential equation.

When the base point for the finite difference approximation of an ODE is point n, the unknown

7/
value y,.; appears in the finite difference approximation of Y , but not in the derivative

function T(t,Y). Such FDEs are called explicit FDEs. The explicit Euler method is the
simplest example of an explicit FDE.

When the base point for the finite difference approximation of an ODE is point n+1, the

unknown value y,.; appears in the finite difference approximation of 7' and in the derivative
function T(t,V). Such FDEs are called implicit FDEs.

The Implicit Euler Method

Consider the general nonlinear first-order ODE:

)7' = f(t’ }_/) y(to) =Y

—0- — -
n n+1 t

Finite difference grid for the implicit Euler method.

Choose point n+1 as the base point and develop a finite difference approximation of the above
general nonlinear first-order ODE at that point. The finite difference grid is illustrated in

Figure (5.7). The first-order backward difference finite difference approximation of V' is
given previously by:

yn+l yn
nl At

1_
E ( n+1) At

Substituting this equation into the general nonlinear first-order ODE, and evaluating f (1, Y)
at point n+1 yields

yn+1 yn
At

+ = y”(Tn+1) At ( n+l? yn+1) = fn+1
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Solving for yn+1 gives
Vi Vi 3 1 o " 2 - r 2
yn+1 = yn + At fn+1 - E y (Tn+1) At - yn + At fn+l + O(At )

Truncating the O(Atz) remainder term yields the implicit Euler FDE:

yn+1 - yn + At fn+1 O(Atz)

Several features of this equation are summarized below:

1. The FDE is implicit, since f,.; depends on y,.;. If f(t,y) is linear in y, then f,.; is linear
in yue1, and this equation is a linear FDE which can be solved directly for y,.1. If f(t,y)
is nonlinear in y, then the equation is a nonlinear FDE, and additional effort is
required to solve for y,.;.

2. The FDE is a single-point FDE.

3. The FDE requires only one derivative function evaluation per step if f(t,y) is linear in
y. If f(t,y) is nonlinear in y, the equation is nonlinear in y,.;, and several evaluations of
the derivative function may be required to solve the nonlinear FDE.

4. The single-step truncation error is O(Atz ) and the global error is O(At).

The algorithm based on repetitive application of the implicit Euler FDE to solve initial-value
ODEs us called the implicit Euler method.

The derivative function f (t, V) may be linear or nonlinear in 7 . When f (t, V) is

linear in Y , the corresponding FDE is linear in y,.;, for both explicit FDEs and implicit

FDEs. When f (t, V) is nonlinear in y , explicit FDEs are still linear in y,.;.. However,
implicit FDEs are nonlinear in y,+;, and special procedures are required to solve for y,.;. One
of the procedures (Newton's method) is discussed in the next example.
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Example: The implicit Euler method.

Solutions: Let's solve the radiation problem presented earlier using the implicit Euler finite
difference equation. The derivative function is fT({,T)=—« (T * —Ta4) . Thus,

Tn+1 :Tn + At fn+1
T =T, —aatT! -T4)

n+l

This equation is a nonlinear fourth-order polynomial FDE. Procedure for solving nonlinear
implicit FDEs is presented in the following using Newton's method.

Rearranging the last equation into the form of Y,.1 = G(ym) or,

F(yn+1) = Yna _G(yn+1): 0

Expanding F(Y,.,) in a Taylor series about the value y,.; and evaluating at le yields

F(yml) = F(yn+1)+ F,(yn+1)(yn+l - yn+l)+ """" =0

where le is the solution of Yp,q = G(ym). Truncating the last equation after the first-
order term and solving for y,.; yields

(k)
(k+1) — (k) _ F( n+1)
n+1 n+1 F, y(k)

n+1

The last equation must be solved iteratively. Newton's method works well for nonlinear
implicit FDEs. A good initial guess may be required.

Returning back to our example where:

Tn+1 :Tn + At fn+1
T.=T, —aAt(Ts T

n+1

Rearranging the equation to be solved using Newton's method yields

F(Tn+l):Tn+1 _Tn +Ata(T4 —Ta4): 0

n+1
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The derivative of F(Tn+1) is

n+1

F(T,)=1+4AtaT?

Then

TED 70 _ (1Y)

n+l
n+1 F[iT (k) i

n+1

Let At =2.0'S_ For the first time step,

F(T,)=T, — 25000 +(2.0)(4.0x10 )(2500.0* - 250.0*)
F'(T,)=1+4(2.0)(4.0x102)T?

Let T,” = 2500.0K . Then

F(T®)=2500.0 — 2500.0 +(2.0)(4.0 x 10 )(2500.0* — 250.0* )

— 312.468250
F/(T®)=1+4(2.0)(4.0x107)2500.0° =1.500000
T, =2500.0 - 312468250 _ 2291.687500

1500000

Repeating the procedure three times yields the converged result T1(4) =2282.785819.
These results are presented in the following table, along with the final results for the

subsequent time steps from t = 4.0s to 10.0s. The results for At =1.0s are also presented.
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Solution by Newton’s Mcthod

3 T,
Lt k Tnu:-l Fnr F,;
Iyl Tosl Tt Error
0.0 0 2500.000000
! 2500.000000 312.468750 1.500000
2 2291.687500 12.310131 1.385138
3 2282.800203 0.019859 1.380674
4 2282785819 0.000000 1,380667
2.0 2282.785819 2248.247314 34.538505
4.0 2120934807 2074611898 46.322909
6.0 1994 394933 1944.618413 49.776520
8.0 1891.929506 1842094508 49 834993
10.0 1806.718992 1758.263375 48.455617
Solution by the Implicit Euler Method
tn Tn _
Lyal Thi Ly Error
0.0 2500.000000
2.0 2282785819 2248247314 34.538505
4.0 2120.934807 2074.611898 46.322909
6.0 1994.394933 1944.618413 49.776520
8.0 1891.929506 1842.094508 49.834998
10.0 1806.718992 1738.263375 48.455617
0.0 25060.000000
1.0 2373.145960 2360.829988 12.315972
2.0 2267.431887 2248.247314 19.184573
9.0 1824.209295 1798.227867 25.981428
10.0 1783.732059 1758.263375 25.468684

The results presented in the last table behave generally the same as the results presented in
the explicit Euler method. An error analysis at t = 10.0s gives

Ratio =

E(At=2.0) 48.455617

E(At=1.0) 25468684

which shows that the method is first order. The errors are all positive, indicating that the
numerical solution lags the exact solution. This result is in direct contrast to the error
behavior of the explicit Euler method, where a leading error was observed. In the present
case, the derivative function of the FDE is evaluated at point n+1, the end of the interval of
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integration, where it has its smallest value. Consequently, the numerical solution lags the
exact solution.

Comparisons of the Explicit and Implicit Euler Methods

The explicit Euler method and the implicit Euler method are both first-order [i.e., 0(At)]
methods. As illustrated in the last two examples, the errors in these two methods are
comparable (although of opposite sign) for the same step size. For nonlinear ODEs, the
explicit Euler method is straightforward, but the implicit Euler method yields a nonlinear
FDE, which is more difficult to solve. So, what is the advantage, if any, of the implicit Euler
method?

The implicit Euler method is unconditionally stable, whereas the explicit Euler method
is conditionally stable. This difference can be illustrated by solving the linear first order
homogeneous ODE

y+y=0 y(0)=1
For which ]E(t, Y) =—V, by both methods. The exact solution is

ORTS

Solving the ODE by the explicit Euler method yields the following FDE:

Yo = Yn + At fn =Yn + At (_ yn)

Yo = (1_ At) Yn

Solutions of this equation for several values of At are presented in Figure (5.8). The numerical
solution behaves in a physically correct manner (i.e., decrease monolithically) for
At <1.0as t — oo, and approaches the exact asymptotic solution, Y() =0. For At =1.0
, the numerical solution reaches the exact asymptotic solution, Y() =0, in one step.

For 1.0< At < 2.0 | the numerical solution overshoots and oscillates about the exact
asymptotic solution, Y() =0, in a damped manner and approaches the exact asymptotic
solution as 1 —>© . For At=2.0, the numerical solution oscillates about the exact
asymptotic solution in a stable manner but never approaches the exact asymptotic solution.
Thus, solutions are stable for At <2.0.

For At>2.0, the numerical solution oscillates about the exact asymptotic solution in

an unstable manner that grows exponentially without bound. This is numerical instability.
Consequently, the explicit Euler method is conditionally stable for this ODE, that is, it is

stable only for At <2.0.
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The oscillatory behavior for 1.0 <At < 2.0 is called overshoot and must be avoided.
Overshoot is not instability. However, it does not model physical reality, thus it is

unacceptable. The step size At generally must be 50 percent or less of the stable step size to
avoid overshoot.

Functions y(t) and y(t)
o

At=15
at=20-
At= 2.5—‘

Behavior of the explicit Euler method

Solving the ODE by the implicit Euler method gives the following FDE:

Yna = Y +At fn+1 =Y + At (_ yn+1)

This equation is linear in y,.1, it can be solve directly for y,.; to yield

Yn
1+ At

yn+1 =

Which can be solved for several values of At as presented in the figure. The numerical solution

behaves in a physically correct manner (i.e., decrease monotonically) for all values of At.
This is unconditional stability, which is the main advantage of implicit methods. The error

increase as At increases, but this is an accuracy problem, not a stability problem.
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d y(t)

Functions y(t) an

Time t

Behavior of the implicit Euler method
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Runge-Kutta Methods

Runge-Kutta methods are a family of single-point methods which evaluate AY =Y., =Y, as
the weighted sum of several AY; (1 =1,2,---), where each AY; is evaluated as At multiplied
by the derivative function T (t,Y) , evaluated at the same point in the range t, St <t ., and
the C; (1=12,---) are the weighting factors. Thus,

Vou = Yo T A =Y (Yo =Y ) o (23)

where AY, is given by

Ay = Cl Ayl +C2 Ayz _|_C3 Ays 4+ PR 02

The second order Runge-Kutta method is obtained by assuming that AY =Y., —Y, is a
weighted sum of two AY'S :

Vo = Y0 TCLAY +C,AY, | o (25)
where AY, is given by the explicit Euler FDE:

Ay, = AT,y )= A e (26)
and AY, is based on f(t, Y) evaluated somewhere in the interval t, <t <1, :

AY, = At Tt + (AL, Y, +(BAY,)] oo (27)

where & and B are to be determined. Let At = h. Substituting AY, and AY, into Eq. (25)
gives

yn+1 = yn +C1 (h fn)+C2 h f[tn +(aAt)’ yn +(ﬂAy1)] ----------------- (28)

Expressing f(t,yY) inaT aylor series at grid point n gives

f(t,y)=f +f

nh+fy

AY + ... et s (29)

n
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Evaluating T(,y) at t=t, +(6¥ h) (e, At=ah ) and y=Y, +(,8Ayn) (i.e.,
Ay = phf, ) gives

tlt, +(ah).y, +(Bay,)]= 1, +(@h)f], +(Bn )5, +0h?) ... @G0

Substituting this result into Eq. (28) and collecting terms yields
2 3
Yo = Yo +(C, +C )N f, +h2(aC, £+ 5C, 1,1,| )+0(n?)

The four free parameters, C;,C,,a, and B can be determined by requiring Eq. (31) to
match the Taylor series for Y(t) through second-order terms. That series is

Your = Vs S e ettt et e (32)
V| = 0 70)= Fo e (33)

V14 o/ ' r df 3 £ =

y‘n:(Y)n:fn:a :ftn+fyny‘n+ ............................... (34)

Substituting Eqs. (34) and (33) into Eq. (32), where y"n = f_n, gives

Vou=Yo+hf += h( fil +f. f, ) 00®) oo (35)

Equating Egs. (31) and (35) term by term gives

1 1
C,+C, =1 aC1:E ﬂC2=§ (36)
1 1
There are an infinite number of possibilities. Letting C = 5 gives C, :E ,a=1, and
,B =1, which yields the modified Euler FDEs. Thus,
Ay =hF (6, Yo )= s (37)
AY, =h (0 Yo )= 0 F o e (38)
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1 1 h
Voa = Yo+ 5 A+ AY, =Y, +§(fn + 1) o (39)

1
Letting C, =0 gives C, =1, & = E and P = E , which yields the modified midpoint

FDEs. Thus,

AY, =hf Y ) =N e (40)
Ay, =h f(tn +2, Ya +%) =Nt o (41)
Vou =Y, +0)AY, + WAY, =y +0f 0 o (42)

Other methods result for other choices for C; and C,.

In the general literature, Runge-Kutta formulas frequently denote the Ayi'S by k's
(i=1,2,......). Thus, the second order Runge-Kutta FDEs which are identical to the modified
Euler FDEs, Egs. (37) to (39), are given by

1
Yni = Y +E(k1 + kz) PRSP USPSPRN /% )
Ki =N F (s Yo ) = N o e (44)
K, =h f(t, + At Y, +K)=N T e (45)
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The Fourth Order Runge-Kutta Method

Runge-Kutta methods of higher order have been devised. One of the most popular is the
following fourth-order method:

1
Yoy =Y, + 6(Ayl + 2Ay2 + 2Ay3 + Ay4) TN £ 10))
h A
Ay, =h £t y,) Ay2=hf[tn+5,yn+%j ....... (47.0)
Ay3=hf(tn+g,yn+%J Ay, =hf(t,+hy, +4ay,) . (47.b)

To perform a consistency and order analysis and a stability analysis of the fourth order Runge-
Kutta method, Eqs. (46) and (47) must be applied to the model ODE, V+ay=0, for
which f(’[, Y) =—ay, and the results must be combined into a single-step FDE. Thus,

Ay2=—(ah)yn(1—(%)j e (49.B)
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Ay, =h f(t, +h,y, +Ay,)

=h —aly, + —(ah)yn(l—(oéh)+(a2)zj ................... (51.a)
Ay, :—(ah)y{l—(ah)+(a2)2 —(az)s} et (51.B)

Substituting Egs. (48), (49.b), (50.b), and (51.b) into Eq. (46) yields the single-step FDE
corresponding to Egs. (46) and (47):

1 1
Yo = Yn _(ah)yn +_( h)2 Yn __( h)3 Yn

> : (@) y, ... 52

In summary, the fourth order Runge-Kutta FDEs have the following characteristics:

1. The FDEs are an explicit predictor-corrector set of FDEs which requires two
derivatives function evaluations per step.

2. The FDEs are consistent, 0(At5) locally and O(AtA) globally.

The FDEs are conditionally stable (i.e., a At <2.875).
4. The FDEs are consistent and conditionally stable, and thus, convergent.

bl

algorithms based on the repetitive application of Runge-Kutta FDEs are called Runge-Kutta
methods.

Example: The fourth order Runge-Kutta method

To illustrate the forth-order Runge-Kutta method, let's solve the radiation problem using Eq.

(46) and (47). The derivative function is T(t,T) =—05(T4 —Ta4). Equations (46) and (47)
yield

T.=T + %(ATl +2AT, + 2AT, + AT,)
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AT, = At f(t,,T,)=At f, ATZZAtf(thF%,TnJFATle
AngAtf[tn+%,Tn+A7sz AT, = At f(t, + AL, T, +AT,)

Let At =2.0S. For the first time step,

AT, = (2.0)(- 4.0x102)(2500.0* — 250.0* ) = —312.46875000
4
312.46875000) ) 250.04}

AT, =(2.0)-4.0x10? {(2500.0 -

— —241.37399871
4
AT, = (2.0)- 4.0x10 {(2500.0 - 24137399871] = 250.04}
= —256.35592518
AT, =(2.0)- 4.0x10%)(2500.0 — 256.35592518 )" - 250.04]
= —-202.69306346
1[—312.46875000 + 2(— 241.37399871)
T, = 2500.0 + = = 2248.22972313
6| + 2(— 256.35592518) - 202.69306346

These results, the results for subsequent time steps for t = 4.0s to 10.0s, and the solution for

At = 1.0s are presented in the next table.
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Solution by the Fourth Order Runge-Kutta Method

, T AT, AT,
AT, AT,
ru+| Tn+| Error
0.0 2500.000000000 — 312468750000 —241,373998706
—256.355925175 - 202693063461
2.0 2248.229723129 —204.335495214 —169.656671860 —0.017590925
— 175210831240 — 147710427814
4.0 2074.596234925 — 148.160603003 —128.100880073 —0.015662958
- 130.689901700 —114.201682488
6.0 1944.605593419 - 114.366138259 — 101492235905 —~0.012819719
—102,884298188 —92.010660768
8.0 1842.083948884 =92.083178136 —83.213391686 = 0.010558967
—84.038652301 - 76389312398
10.0 1758.254519132 —0.008855569
0.0 2500.000G00000 — 156.234375000 —137.601503560
—139.731281344 - 124122675002
10 2360.829563365 —124.240707542 —111.669705704 —0.000425090
—112.896277161 —102.123860057
20 2248.246807810 —0.000506244
9.0 1708.227583359 —41.809631378 —30.898370905 — 0.000283433
—39.984283934 —38.211873059
10.0 1758.263114333 —0.000260369

The error at t =10.0s for At = 1.0s is approximately 110,000 times smaller than the error
presented for the first-order explicit Euler method and 3,500 smaller than the error presented
for the solution by the modified Euler method. Results such as these clearly demonstrates the
advantages of higher-order methods. An error analysis at t =10.0s gives

E(At=2.0) _-0.008855569 _
E(At=1.0) -0.000260369

Ratio = 34.01

which demonstrates that the method is fourth order since the theoretical error ratio for an
O(At4) method is 16.0.
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Higher-order ordinary differential equations

Many applications in engineering and science are governed by higher-order ODEs. In
general, a higher-order ODE can be replaced by a system of first-order ODEs. When a system
of higher-order ODE: s is involved, each individual higher-order ODE can be replaced by a
system of first-order ODEs, and the coupled system of higher-order ODEs can be replaced by
coupled system of first-order ODEs. The systems of the first-order ODEs can be solved as will
be described later.

Consider the second-order initial value ODE developed for the vertical flight of a rocket, and
simpler model given earlier

1
Co(PV,Y), P(Y) AV

y' = F(tt’.y) —g(y)- o (1)
M, — [m(t)dt M, — [ m(t)dt

y'=———g  y(0.0)=00 ad y(00)=V(©0.0)=00 ___ 2
M, —mt

Equations (1) and (2) both can be reduced to a system of two coupled initial-value ODEs by
the procedure described below.

Consider the general n"-order ODE:

y® = £ty y”,...,y(”fl)) e (3)
yt,)=y, and  yOt)=y" (i=12.n-1) ... @

Equation (3) can be replaced by an equivalent system of n coupled first-order ODEs by
defining n auxiliary variable. Thus,

Yi=Y
Yo=Y =V
Y=Y =Y,
(5.1-5.n)
yn = y(n—l) = yr,1—1
Differentiating Eq. (5.n) gives
Yo =Y e (6)
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Rearranging Eqs. (5.2) to (5.n) and substituting these results and Eq. (6) into Eq. (3) yields
the following system of n coupled first-order ODEs:

Y1 =Y, Y. (0) =y,
y; =Y Y, (O) — y(’)
yr,1—1 = yn yn_l(o) = y(()”—Z) (7.1-7.n)

Vi = F(t Y0 Yorn ¥a) ¥a(0) = Y5

where Eq.(7.n) is the original n"-order ODE, Eq. (3), expressed in terms of the auxiliary
variables Y, (i =12,..., n).
The result is a system of n coupled first-order ODEs. This reduction can nearly always be

done. Thus, the general features of a higher-order ODE are similar to the general features of
a first-order ODE.

Example: Reduction of a second-order ODE to two coupled first-order ODEs

To illustrate the reduction of a higher-order ODE to a system of coupled first-order ODEs,
let's reduce Eq. (2) to a system of two coupled first-order ODEs.

4 F

y ZM—Q y(0.0)=0.0 and y'(0.0)=V(0.0)=00 .. .. (8)

0

Let Y' =V . Then Eq. (8) reduces to the following pair of coupled first-order ODEs:

y' =V Y(0.0)=0.0 .. (9)

F
Vis———-g V(0.0)=00 . ... i (10)

M, —mt

o

Equations (9) and (10) comprise a system of two coupled first-order ODEs for y(t) and V(1).
And this system will be solved later in this chapter.
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Systems of first-order ordinary differential equations
In many applications in engineering and science, systems of coupled first-order ODEs
governing several dependent variables arise. The methods for solving a single first-order ODE

can be used to solve systems of coupled first-order ODEs.

Consider the system of n coupled first-order ODEs:

y, = f(t. V0. Vorn Vi) (i=22,s0) e (D)

y/(0.0)=Y, (1=22,.0) o (2)

Each ODE in the system of ODEs can be solved by any of the methods developed for solving
single ODEs. Care must be taken to ensure the proper coupling of the solutions. When
predictor-corrector or multistep methods are used, each step must be applied to all the
equations before proceeding to the next step. The step size must be the same for all the
equations.

Example: Solution of two coupled first-order ODEs

Consider the system of two coupled linear fist-order initial-value ODEs develop in the last
example for the vertical motion of a rocket:

y' =V ¥(0.0)=0.0 . (3)

Ve — V(0.0)=0.0
Y (0.0) e e e (4)

o

Where M o is the initial mass, NV is the mass explosion rate, and g is the acceleration of
gravity. The exact solution of Eq.(4) is

T mt
Vt)=——In1-— |—gt
Substituting Eq.(5) into Eq.(3) and integrating yields the exact solution of Eq.(3):
M, (T mt mt Tt 1
t)=—2 — | 1-—— |In|1-— |+ ——=qgt°
y(t) - (mj[ MOJ ( Moj LN
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As an example, let T =10,000N, M, =100.0 kg, m =5.0kg/s, and g =9.8m/s*.

Equations (3) and (4) become
y'=f(t,yV)= y(0.0) = 0.0

, 10,000.0
V' =g(t, y,V):m

Equations (5) and (6) become

~98  V(0.0)=0.0

V (t) =-1000In(1-0.05t)—-9.8t

y(t) =10,000(1—0.05t )In(1—0.05t )— 2000t — 4.9t

()

(8

.9

. (10)

Let's solve this problem by the fourth order Runge-Kutta method, for V (10.0) and y(10.0)

with At =1.0s . Let Ay,(i

denote the increments in V(t). Thus,

1
Yo = Yo+ ~(Ay, + 24y, + 24y, + Ay,)

V., =V + % (AV, + 2AV, + 2AV, + AV,

where Ayi (I 21,2,3,4) and AVi (I 21,2,3,4) are given by

Ay, =Atf(t,y,,V,)

AyZ:Atf(tn+%,yn Aylv AV)

=1,2,3,4) denote the increment in y(t) and AV, (i

AV, = Atg(t, Y Vo) oo

2 2
AV, =atg[t + ALy Ay AV
2 2 2
At AV,
Ay, =At flt +—,
oot oAy, My )
At Ay AV,
AV, = Atglt +—, —2V +
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Ay, = At (t, +At,y, +Ay,, V. +AV,)
AV, SALG(E + ALY, + Ay, +AV,) o (13.d)

Due to the coupling, AY, and AV, both must be computed before AY, and AV, can be
computed, and AY, and AV, must be computed before AY, and AV, can be computed, etc.

The derivative functions, f(t, y,V) and g(t, y,V) are given by Egs. (7) and (8),
respectively. Thus, Eq. (13) reduces to

Ay, =At(V.) AV, = At(%—QSJ . (14.0)

Ay, =4l (V” +A7V1J AV, =4l :100.0_1 g’.g(()t?gm/ 2) _9'8: """"" (14.5)
Ay, = At(vn - A;/zj AV, = At :100.0_12’.2((),[(:'3&/2)—9-8: .......... (14.c)
Ay, =AMLV, +AV,) AV, = At{loo_olfggzi At)—%} ............... (144)

Let At =1.0S . For the first time step,

Ay, =1.0(0.0) = 0.000000

10,000.0

AV, =1.0
1100.0-5.0(0.0

) — 9.8} =90.200000

Ay, =1.0] 0.0

+ —90'200000) =45.100000

AV, = 1_0{ 10,000.0

~9.8|=95.463158
100.0-5.0(0.0+1.0/2)

=47.731579

AY, :1.0(0.0+ 95.463158]

AV, =1.0 10,090.0 ~9.8|=95.463158
100.0-5.0(0.0+1.0/2)
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Ay, =1.0(0.0+95.463158) = 95.463158

AV, =10 10,000.0
100.0-5.0(0.0+1.0

) - 9.8} =101.311111

Substituting these results into Egs. (11) and (12) gives

Y, =00+ %(o.o +2(45.100000 + 47.731579 )+ 95.463158 ) = 46.854386 m

V., =0.0 +%(9o.2ooooo +2(95.463158 + 95.463158)+101.311111) = 95.560624 m/s

These results and the results for the subsequent time steps for t = 2.0 10 10.0S are presented
in the following table.

Table Solution of Two Coupled First-Order ODEs
Iy Vi Ay, Ay, Ay; Ay,
v, AY, AV, AV, AV,
s Ynta
Vﬂ+1
0.00 0.00000000 0.00000000 45.10000000 46.38205128 92.76410256
0.00000000 90.20000000 92.76410256 92.76410256 95.46315789
1.00 45.95470085 92.78659469 140.51817364 141.94064875 191.09470280
92.78659469 95.46315789 98.30810811 98.30810811 10131111111
200  187.41229123 191.12104493  241.77660049  243.36390207 295.60675922
191.12104493 0131111111 104.48571429 104.48571429 107.84705882
3.00  430.25599278  295.63788278  349.56141219  351.34304338  407.05000399
295.63788278 107.84705882 111.41212121 11141212121 115.20000000
9.00 4450.68315419 1107.47425871 1193.48334962 1197.81235395 1288.15044919
1107.47425871 172.01818182 180.67619048 180.67619048 190.20000000
10.00 5647.05250670

1288.29474933
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Numerical Analysis Unit-7: Boundary Value Problem

Unit-7: Boundary Value Problem

Introduction
A classic example of a boundary-value ODE is the general second-order ODE:

y'+P(x,y)y'+Q(x,y)y = F(x) ya)=y, and  y(,) =Y,
This equation applies to many problems in engineering and science.
Consider the constant cross-sectional area rod illustrated in the figure. Heat diffusion

transfers energy along the rod and energy is transferred from the rod to the surroundings by
convection. An energy balance on the differential control volume yields

q(%) = q(x -+ dx) + G, (X)

which can be written as

400 = 40) + %[c}(x)}dx 40,00

which yields

d . .
<00 ox+ a0 -0
dx

Heat diffusion is governed by Fourier law of conduction, which states that

Gx) = -ka S
dx

where ((X) is the energy transfer rate (J/s), k is the thermal conductivity of the solid (J/s-m-
K), A is the cross-sectional area of the rod (m’), and dT/dx is the temperature gradient (K/m).
Heat transfer by convection is governed by Newton's law of cooling:

0. (X) = hA(T -T,)

where h is the empirical heat transfer coefficient (J/s-m’-K), A is the surface area of the rod
(A =P dx, m2), P is the perimeter of the rod (m), and T, is the ambient temperature (K) (i.e.,
temperature of the surroundings). From the last three equations we can see that
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i[— kAd—T)dx+ h(Pdx)(T -T,)=0
dx dx

For constant k, A, and P, the last equation yields

d’T _hP
dx* kA

(T-T,)=0

which can be written as

hP
T”—(ZZT =—a2Ta where 052 :M
which is a linear second-order boundary-value ODE. The solution of this equation is the

function T(x), which describes the temperature distribution in the rod corresponding to the
boundary conditions

T(x)=T, and T(x,)=T,

Ac

T(x)="7? _"_/\/ 1,

4x) —= = G(x+dx)

X x+dx

—
AN

ANNNNNNNN
R

Steady heat conduction in a rod
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An example of a higher-order boundary-value ODE is given by the fourth-order ODE
governing the deflection of a laterally loaded symmetrical beam. The physical system is
illustrated in Figure (5.8). Bending takes place in the plane of symmetry, which causes
deflections in the beam. The neutral axis of the beam is the axis along which the fibers do not
undergo strain during bending. When no load is applied (i.e., neglecting the weight of the
beam itself), the neutral axis is coincident with the x-axis. When a distributed load q(x) is
applied, the beam deflects, and the neutral axis is displaced, as illustrated by the dashed line
in Figure (I1.8). The shape of the neutral axis is called the deflection curve.

As shown in many strength of materials books (e.g. Timoshenko, 1955), the differential
equation of the deflection curve is

d’y
dx?

E1(x) =-M(x)

where E is the modulus of elasticity of the beam material, I(x) is the moment of inertia of the
beam cross-section, which can vary along the length of the beam, and M(x) is the bending
moment due to transverse forces on the beam, which can vary along the length of the beam.
The moment M(x) is related to the shearing forces V(x) acting on each cross-section of the
beam as follows:

dM (x)
dx

=V (x)

The shearing forces V(x) is related to the distributed load q(x) as follows:

dv(x) _
dx

—q(x)
Combining the three equations yields the differential equation for the beam deflection curve:

E1005Y =000

This equation requires four boundary conditions. For a horizontal beam of length L,
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For a supported beam at both ends (any kind of rigid support):
y(0.0)=y(L)=0.0
For a beam fixed (i.e., clamped) at both ends:
y'(0.0)=y'(L)=0.0
For a beam pinned (i.e., hinged) at both ends:
y"(0.0) =y"(L)=0.0
For a beam cantilevered (i.e., free) a either ends:
y"(0.0)=0.0 or  y"(L)=0.0
Any two combinations of these four boundary conditions can be specified at each end.

The last equation is a linear example of the general nonlinear fourth-order boundary-value
ODE:

yIIH — .I: (X, y’ yl, y”, yW)

which requires four boundary conditions at the boundaries of the closed physical domain.

e Tw
_________

d4
El(x)d—x% = q(x)
¥(0)=0, y“(0)=0; y(L)=0,and y"(L) =0

Deflection of a beam
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The Equilibrium (Boundary-Value) Method

The solution of boundary-value problems by the equilibrium (boundary-value) method is
accomplished by the following steps:

1. Discretizing the continuous solution domain into a discrete finite difference grid.

2. Approximating the exact derivatives in the boundary-value ODE by algebraic finite
difference approximations (FDASs).

3. Substituting the FDAs into the ODE to obtain an algebraic finite difference equation
(FDE).

4. Solving the resulting system of algebraic FDEs.

When the finite difference equation is applied at every point in the discrete finite difference
grid, a system of coupled finite difference equations results, which must be solved
simultaneously, thus relaxing the entire solution, including the boundary points,
simultaneously.

When solving boundary-value problems by the equilibrium method, consistency, order,
and convergence of the solution method must considered. Stability is not an issue, since a
relaxation procedure, not a marching procedure is employed. Consistency and order are
determined by a Taylor series consistency analysis, which is discussed earlier for marching
methods. The same procedure is applicable to relaxation methods. Convergence is guaranteed
for consistent finite difference approximations of a boundary-value ODE, as long as the
system of FDEs can be solved. In principle, this can always be accomplished by direct solution
methods, such as Gauss elimination.

The second-order boundary-value ODE

Consider the linear, variable coefficient, second-order boundary-value problem with
Dirichlet boundary conditions:

y"+P(x)y' + Q(x)y = F(x) y(x)=v,and ¥(X,)=V, oovoriin. (1)

The discrete finite difference grid for solving Eq. (1) by the equilibrium method is illustrated

at grid point i.
Vi y|+1 yl—l 2
. + O0(AX
L/ yi+1 2y| + yl 1
= 0lAX?

Substituting Egs. (2) and (3) into Eq. (1) and evaluating the coefficients P(x) and Q(x) at grid
point i yields

Page 6 of 24



Numerical Analysis Unit-7: Boundary Value Problem

g, =2 sofuc) p ST Qg -Fi “

All the approximations in Eq. (4) are O(sz). Multiplying Eq. (4) through by AX®, gathering
terms, and truncating the remainder terms yields:

(l_%l:)ijyi_l'i'(_z'i'szQi)yi +(1+%Pi)yi+l :AXZFi (5)

Applying Eq. (5) at each point in a discrete finite difference grid yields a tridiagonal system
of FDEs, which can be solved by the Thomas algorithm.

D(x)
S N
e .
+ o —9o ¢ 09
1 i—1 i i+1 imax S
Figure Solution domain D(x) and finite difference grid.

Example: The second-order equilibrium method

Let's solve the heat transfer problem by the second-order equilibrium method. The boundary-
value ODE is:

T"—a’T=—a’T,  T(0.0)=0.0C and T(1.0)=100.0C ......c...cc....... (6)

Replacing the T" by the second order centered-difference approximation, Eq. (3), and
evaluating all the terms at grid point i gives

-ITi+1 — 2-ri + -ri—l +

o 0(A )=’ ==a’T, oo (D)

2
Multiplying through by AX" | gathering terms, and truncating the remainder term yield the
FDE:

T — (24 @A 4T, = =aAXTT, e (8)

Let @® =16.0cm™, T, =0.0C, and AX = 0.25CM . Then Eq. (8) becomes
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T|—1_3-|-| +T|+1 :O @ e s00 see see ses see ses see ses see ses see esece SEs Ses ses see eee see sos seeens (9)
Applying Eq. (9) at the three interior grid points, X =0.25, 0.5, and 0.75 cm, gives

x=025: T,-3T,+T,=00 T,=T,=00
x=0.50: T,-3T;+T,=00 cvvereeeeeee e (10.a-c)
x=075: T,-3T,+T,=00 T,=T,=1000

Transferring T, and Ts to the right-hand side of Egs. (10.a) and (10.c), respectively, yields the
following tridiagonal system of FDEs:

~30 10 00][T, 0.0
10 -30 10 ||T,|=| 00 et (1)
00 1.0 -30||T,| [-100.0

Solving Eq. (11) by the Thomas algorithm yields the results presented in the next table. The
exact solution and the errors are presented for comparison.

Table Solution by the Equilibrium Method for

Ax = 0.25cm

X, cm T(x), C T(x), C Error(x), C
0.00 0.000000 0.000000

0.25 4.761905 4306357 0.455548
0.50 14.285714 13.290111 0.995603
0.75 38.095238 36.709070 1.386168
1.00 100.000000 100.000000

Let's repeat the solution for AX =0.125cm. In this case Eq. (8) becomes
T, —225T. 4T =0 e e e e (12)

Applying Eq. (12) at the seven interior grid points gives
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x=0.125: T,-2.25T,+T,=0.0 T, =0.0
x=0.250: T,-2.25T,+T,=0.0
X =0.375: T,-2.25T,+T,=0.0
x=0.500: T,-2.25T,+T,=0.0
Xx=0.625: T,-2.25T;+T,=0.0
x=0.750: T,—2.25T, +T, =0.0

x=0875: T,-225T,+T,=0.0 T,=T,=100.0

I
]

(13.a-g)

Transferring T; and Ty to the right-hand sides of Eqs. (13.a) and (13.g), respectively, yields a
tridiagonal system of equations. That tridiagonal system of equations is solved by the Thomas
algorithm in Chapter 2. The results are presented in the next table.

Table Solution by the Equilibrium Method for

Ax = 0.125¢cm

X, cm T(x), C T(x), C Error{x), C
0.000 0.000000 0.000000

0.125 1.966751 1.909479 0.057272
0.250 4.425190 4.306357 0.118833
0.375 7.989926 7.802440 0.187486
0.500 13.552144 13.290111 0.262033
0.625 22.502398 22.170109 0.332288
0.750 37.078251 36.709070 0.369181
0.875 60.923667 60.618093 0.305575

1.000 100.000000 100.000000

The Euclidean norm of the errors for AX=0.25cm is 1.766412 C. The Euclidean norm of the
errors for AX=0.125cm at the three common grid points is 0.468057 C. The ratio of the
norms is 3.77. The ratios of the individual errors at the three common points in the two grids
are 3.83, 3.80, and 3.75. Both results demonstrate that the method is second order.

The errors of the second-order equilibrium method are about 40 percent of the magnitude of
the errors of the second order shooting method. The errors in both cases can be decreased by
using a smaller step size or a higher-order method. The errors are illustrated in the next
figure, which also presents the errors of the compact three-point fourth-order equilibrium
method presented later, as well as the errors from extrapolation of the second-order method,

which is presented later also. For the fourth-order method, the Euclidean norms of the errors
at the three common grid points in the two grids are 0.092448 C and 0.005919 C, respectively.

The ratio of the norms is 15.62, which demonstrates the fourth-order behavior of the method.
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I
10°F ax=
- AX = 0.25
- Second-order
i equilibrium method
o A Ax=0.125
— 10 |
x - )
" [ Ax=0.25
R _
E Extrapolation of kFou'r!h-prder h
e 102 the second-order | ©quilibrium method
1T} . method
s ax =0.125
10'3 L 1 1 1
0 025 050 0.75 1.00
Location x, cm
Figure Errors in the solution by the equilibrium method.

Extrapolation

The second-order results obtained in the last example by the equilibrium method can be
extrapolated by the same procedure presented for the shooting method.

Example: The second-order equilibrium method by extrapolation

Let's apply extrapolation to the results obtained in the last example. Those results were
presented in the last two tables. The results at the three common grid points in the two grids

are summarized in the next table. For these results, R= 0.25/0.125 =2.0.

1

IV = MAV + AMAV - LAV

(MAV - LAV) =

22

The results obtained by applying the above equation is also presented in the next table and
the last figure. The Euclidean norm of these errors is 0.035514 C, which is 13.18 times smaller
than the Euclidean norm of the errors of the second-order equilibrium method without
extrapolation.
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Table Solution by Extrapolation of the Second-Order Equilibrium Method Results
X, cm T(LAV), C T(MAV), C T(IV), C T(x), C Error(x), C
0.00 0.000000 0.000000 0.000000 0.000000

0.25 4.761905 4.425190 4312952 4.300357 0.006595
0.50 14.285714 13.552144 13.307621 13.290111 0.017510
0.75 38.095238 37.078251 36.739255 36.709070 0.030185

1.00 100.000000 100.000000 100.000000 100.000000

Higher-order boundary-value ODEs

Consider the general nonlinear fourth-order boundary-value problem

"

Y = (Y Y YY) e (1)

Eq. (1) is fourth-order, four boundary conditions are required. At least one boundary
condition must be specified on each boundary of the closed solution domain. The two

remaining boundary conditions can be specified on the same boundary, or one on each
"

boundary. These boundary conditions can depend on Y, y,, y”, ory".
A finite difference approximation (FDA) must be developed for every derivative in Eq. (1). All
the FDAs should be the same order. Second-order centered-difference FDAs can be developed
for all four derivatives in Eq. (1). The first and second derivatives involve three grid points,

points i-1 to i+1. The third and fourth derivatives involve five grid points, points i-2 to i+2.

Consequently, the resulting finite difference equation (FDE) involves five grid points.

Applying this FDE at each point in a finite difference grid yields a penta-diagonal system of
FDEs, which can be solved by an algorithm similar to the Thomas algorithm for tridiagonal
system of FDEs.

Example: A fourth-order ODE by the second-order equilibrium method

Let's solve the deflection problem for a laterally loaded symmetrical beam, expressed in the

form of

mr__ q(X)

where E is the modulus of elasticity of the beam material, I(x) is the moment of inertia of the
beam cross section. And q(x) is the distributed load on the beam. Let's consider a rectangular

cross section beam, for which | = Wh?3 /12, where w is the width of the beam and h is the
height of the beam, and a uniform distributed load q(x) = q = constant.
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The ends of the beam are at the same elevation, which can be chosen as y= 0.0. Thus,
¥(0.0) = y(L) = 0.0, where L is the length of the beam. One additional boundary condition

is required at each end of the beam. If the beam is fixed, then y’ is specified. If the beam is
pinned (i.e., clamped), then y” =0.0 If the beam is free (i.e. cantilevered), then

y'" =0.0 . Ler's assume that both ends of the beam are pinned. Thus,
y"(0.0) = y"(L) = 0.0.
Thus, the problem to be solved, including the boundary conditions, is given by

m — i

4 El

y(0.0)=y"(0.0)=y(L)=y"(L)=00 ... ... 3

The exact solution of Eq. (3) is

4

qx* gqLx®* ql’x
X)= —~ +
Y() SAEL 12E] T oA e 4)

As an example, let  =—2000.0 N/m, L=5.0m, w=5.0cm, h=10.0cm, and
E =90x10° N/M?. Then Egs. (3) and (4) become

y'" =-0.0024 y(0.0) = y"(0.0) = y(5.0)=y"(5.0)=0.0
y(x) = 0.000100x* —0.001000x® + 0.012500K .........c0.cccevsevseveerer. (6)

"
Let's solve this problem using a second order centered-difference approximation for Y

Write Taylor series for Yin and Y., with base point i :

l i 1

_ — = 1—” 2 3 = mr 4
iu =Y, TV | AX+ Y| AX® £ AXT +—§"| AX
Yiun =Y y|| 2y || 6y || 24y || (7)
iiy(v)_Ax5+iy(“)_Ax6i...
120 i 720 i
4 8 16
Vi, = ¥, 22V Ax+ = V"] AX* £ =" AX® + —§"'| AX*
Yieo = Vi 22, 5V, 6yl, A N
igy(v)_Ax5+ﬁy(V‘) AX® +...
12 i 720
Adding Y,,, and Y, , gives
2 2 2 -
Vo, +V ,)=2y += V'l A2+ 9" Ax* + —— g AX® +...
(y|+1 yl—l) yl 2y i 24y i 720y P AAACALRRLELEE (9)

Adding Y., and . , gives
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(o 91a) =29, + 2 V| AX 42 g7 A+ 2229 A (10

Subtracting 4()7i+1 + yi_l)from ()7”2 + )_/i_z) yields

Vi Vi Vi Vi Vi om 1 o lvi
(yi+2 + yi—z)_4(yi+1 + yi—l): 6y, +V |iAX4 +gy( ) iAXS T e (1)
Solving Eq. (11) for 7"”|i yields
V.. —AV 46V -4V +V. . 1 ..
yv| ==t PN TR T C g0 AAC e (12)

Ax? 6

where X , <& <X, . Truncating the remainder term yields a second order centered-

gm| .

difference approximation for Y

V. . —4V. 6V. —4V. V.
i:y._z yl_ﬁm{i‘ Yin W2 (13)

"’

y

Substituting Eq. (13) into Eq. (5) yields
Yioo _4yi71 +6yi _4yi+1 t Vi = _00024AX4 O 4

Let AX=1.0 M. Applying Eq. (14) at the four interior points illustrated in the next figure
gives

x=1.0: y,—4y, +6y, -4y, +y, =-0.0024
Xx=20: y, —4y, +6y, -4y, +y. =-0.0024
x=3.0" Y, =AY, +BY, —4ye + Yo = —0.0024 e (15.a-d)
X=4.0: y, —4y, +6y. —4y, +y; =-0.0024

Note that Y1 in Eq. (15.a-b) and Yg in Eq. (15.c-d) are zero. Grid points A and B are outside

the physical domain. Thus, Yp and Yg are unknown. These values are determined by

applying the boundary conditions )7"(0.0)= V"(L)= 0.0. 4pplying the second derivative
FDA formula at grid points 1 and 6 gives
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" y _2y +Y
y'|, == Axlz £ =0.0
" _ yB - 2y6 + y5 _ 0 O (]6a-b)
Ve = AX® e
Solving Eq. (16) for Y and Yg, with Y1=Ys= 0.0, gives
Ya==Y, and Yg=—Y5 e (17)
A 1 2 3 4 S 6 B i
—e- -— —— - — —5 - -
0.0 1.0 2.0 3.0 4.0 5.0 X
Figure Finite difference grid for the beam.

Substituting these values into Egs. (15.a) and (15.d), respectively, and rearranging those two
equations yields the following system equation:

o5y, -4y, +Y, =-0.0024
-4y, +6y, -4y, +y. =-0.0024

y,—4y, +5y. =-0.0024

Expressing Eq. (18) in matrix form yields

5 -4 1 0][y,] [-0.0024]
—4 6 -4 1 ||ys| |-0.0024
L —4 6 -4y, |T]-0002a] e (19)
0 1 -4 5][y;| |-0.0024

Although it is not readily apparent, Eq. (19) is a penta-diagonal matrix, which can be solved
very efficiently by a modified Gauss elimination algorithm similar to the Thomas algorithm
for tridiagonal matrices. Solving Eq. (19) yields the presented in the next table. The exact
solution and the errors are presented for comparison.
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Numerical Analysis

Unit-7: Boundary Value Problem

Table Solution by the Equilibrium Method
with Ax=1.0m

X, m y(x), m ¥(x), m Error(x), m
0.00 0.000000 0.000000

1.00 0.012000 0.011600 0.000400
2.00 0.019200 0.018600 0.000600
3.00 0.019200 0.018600 0.000600
4.00 0.012000 0.011600 0.000400
5.00 0.000000 0.000000

Let's repeat the solution for AX = 0.5 M . In this case, Eq. (19) becomes

5 -4 1 0 0 0 0 0]y,] [0.000150]
-4 6 -4 1 0 0 0 0 0|y, | [0.000150
1 -4 6 -4 1 0 0 0 0]y, | |0.000150
0 1 -4 6 -4 1 0 0 0]y, | [0.000150
0 0 1 -4 6 -4 1 0 0|y |=[0000150 20)
0 0 0 1 -4 6 -4 1 0]|y,| [0.000150
0 0 0 0 1 -4 6 -4 1]y, | [0.000150
0 0 0 0 0 1 -4 6 -—4||y,| [0.000150
0 0 0 0 0 0 1 -4 5]y,] |0000150

The penta-diagonal structure of Eq. (20) is readily apparent. Solving Eq. (20) yields the results
presented in the next table.

The Euclidean norm of the errors for AX =1.0 M is 0.123456 m. The Euclidean norm of the

errors for AX = 0.5 M at the four common grid points is 0.012345 m. the ratio of the norms

is 3.99. The ratios of the individual errors at the four common grid points in the two grids are
3.96, 3.97, 3.98, and 3.99. Both results demonstrate that the method is second order.
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Numerical Analysis

Unit-7: Boundary Value Problem

Table Solution by the Equilibrium Method
with Ax = 0.5m

X, m y(x), m P(x), m Error(x), m
0.0 0.000000 0.000000

0.5 0.006188 0.006131 0.000056
1.0 0.011700 0.011600 0.000100
1.5 0.016013 0.015881 0.000131
2.0 0.018750 0.018600 0.000150
2.5 0.019688 0.019531 0.000156
3.0 0.018750 0.018600 0.000150
35 0.016013 0.015881 0.000131
4.0 0.011700 0.011600 0.000100
4.5 0.006188 0.006131 0.000056
5.0 0.000000 0.000000
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Numerical Analysis Unit-7: Boundary Value Problem

Applications of FDM to determinate beams

Since moments in the determinate beams can be obtained by equilibrium method the following
differential equation may be used:

d’y M
dx* El

In numerical representation

;H()CDC)Mk%

by using this stencil, the deflection of beam can be found at selected nodes.

Example: For the beam shown in the figure, find the deflection at nodes. Take h = 1 m.

Solution:

M = W_L(X)_ wx® w=10 kN/m
2 2
_ 10x 6 (X)_lo(xz)

2

=30x—-5x?

[6)olo]o)ole)e]
(yi—l_zyi+yi+1):é(30)(i_5xi2)'h2 }% 6m %{

25
Yi—2Y,+Y; = El

40
Yo —=2Ys+ Y, =— _

El Five Egqs but 7 unknowns then we need 2
Vs =2y, +Ys = g boundary conditions:

40 _ _
y4—2y5+y6:a y:=0 and y,=0

Vo= 2Ys 4y, = o
5 6 7 E|
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Numerical Analysis Unit-7: Boundary Value Problem

Solving the system of linear algebraic equations yields

Y, (87.5
A . 150
=——11725
Y4 El
Ye 150
Ye 87.5
Exact solution:
2
M =30x-5x? = E1 97
dx

.-.El.y=5x3—%x“+clx+c2 atx=0 y=0 = ¢,=0
atx=6 y=0 = ¢, =-90

- Ely=5x° _ > x*_90x
12

x (m) | y (Analytically) y (Numerically)
1 -85.42/E1 -87.5/E1
2 -146.67/E1 -150/El
3 -168.75/E1 -172.5/E1
4 -146.67/E1 -150/E1
5 -85.42/E1 -87.5/E1
The difference in maximum deflection is % x100% = 2.2 %

O-If h = 0.5 m then the difference will be small?!
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Numerical Analysis Unit-7: Boundary Value Problem

Applications of FDM to indeterminate beams

For the indeterminate beams, the moments are unknowns, so the differential equation which
is applicable will be:

The stencil representation is: -

OO0 ju-g

Example: Find the deflection curve for the beam shown in the Fig below using h=L/5 ?

Solution: W

SR

Imaginary e----

O

- @k\
O
©
©
O
X
©

W4
(Yi-z —4y,, +6y, -4y, + Yi+2): El
Vvh4
@1: y_1_4YO+6y1_4y2+y3:E
Vvh4
@2: YO_4Y1+6yZ_4Y3+y4:E

4

Wh
@3: Y1_4yZ+6y3_4y4+y5 :H

4

Wh
@4: y,—4y; +6y, —4ys + Y, =R

4-equations with 8-unknowns — 4-boundary conditions needed:
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Numerical Analysis Unit-7: Boundary Value Problem

Boundary Conditions:

1y, =0
2.¥. =0
- dy i
3.at point 0 f=—=0=——-"=0 =
g &~ 2n ==Y
2 —
4. at point 5 M:EIZXE/:O:y“ 2>;5+y6=0:>y4=—y6

If we substituted these 4-BC's into the above equations we get:

7 -4 1 01[y,] [0.0768]
~4 6 -4 1 ||ly,| |0.0768 wL*
1 -4 6 —4||y,| |0.0768|48El
1 -4 5|y, | |0.0768]

Solving the system yields:

y,| [0.1129412]
y, | |0.2529882 | w*
y, | |0.2981647 | 48El
'y, | 10.2032914

The exact solution is:

= () -5 (1) |

Substituting X =0.2L, 0.4L, 0.6L, 0.8L gives:

y, | [0.0832]
Y, 0.2112 | wL*

Y, | |0.2592 | 48EIl The Error ranging from 15-30 %
y,| 10.1792

If 10 divisions (x=0.1L) is chosen, then the numerical solution is:
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Numerical Analysis Unit-7: Boundary Value Problem

y, | [ 0.029552 1 Tossanie
y, | |0.0906985 ) Ye : 4
y, | =| 01607284 | - Yr | _|0.243475 | Wi
yg 6221731 48El Y, | |0.185266 | 48El
y4 0.260597 | Yo | | 0.100477 |

| Y5 [V |

In this case the Max. Error is 9%
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Numerical Analysis Unit-7: Boundary Value Problem

Approximate Eigenproblems

Eigenvalues of homogenous boundary-value problems can also be obtained by numerical
methods. In this approach, the boundary-value ODE is approximated by a system of finite
difference equations, and the values of the unknown parameter (i.e., eigenvalues) which satisfy
the system of FDEs are determined. These values are approximations of the exact eigenvalues
of the boundary-value problem.

Example: Approximation of eigenvalues by the equilibrium method.

Let's solve Eq. (1) for its eigenvalues by the finite difference method. Choose an equally spaced

grid with four interior points, as illustrated in the next figure. Approximate V" with the
second order centered-difference approximation. The corresponding finite difference
equation is:

Yia _iyiz"' Yia +O(AX2)+ K2Y =0 e (7)
X

Multiplying by AX® , truncating the remainder term, and rearranging gives the FDE:

Vi, —(Z—szkz)yi Vi =0 e (8)
1 2 3 4 S 6
@ & — @ & -
0 0.2 0.4 0.6 0.8 1V X
Figure Finite difference grid for the eigenproblem.

Apply the FDE, with AX =0.2, at the four interior points:

x=02: y,—(2-004k?)y, +y,=0 y, =0
Xx=04: y2—(2—0.04k )y +vy,=0
x=06: y,—(2-0.04k?)y, +y, =0

) (9.a-d)
x=08: y,—(2-004k?)y,+y,=0  y,=0

Writing Eq. (9) in matrix form gives
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Numerical Analysis Unit-7: Boundary Value Problem

[(2-004k?) -1 0 0o ]

-1 (2-004?) -1 0 B

0 1 -ooa?) -1 =0 ... (10)
0 0 -1 (2-0.04k?)]

Which can be expressed as

(A=2D)Y =0 e (1)

where A = 0.04K? and A is defined as

2 -1 0 O]
-1 2 -1 0

A= 0 _1 2 1| e e (12)
0 0 -1 2]

This is a classical eigenproblem. The characteristic equation is given by

det(A—A1)=0 o 13)

Define Z =(2—0.04k2). The characteristic equation is determined by expanding the

determinant |A—=M| =0 which gives

Z* =327 4+1=0 o (14)
which is quadratic in Z° . Solving Eq. (14) by the quadratic formula yields
Z=(2-0.04k?)=+1.618---£0.618-- ... (I3

The values of Z, K, k(exaCt), and percent error are presented in the next table.

The first eigenvalue is reasonably accurate. The higher-order eigenvalues become less
and less accurate. To improve the accuracy of the eigenvalues and to obtain higher-order
eigenvalues, more grid points are required. This is not without disadvantages, however.
Expanding the determinant becomes more difficult and finding the zeros of the higher-order

polynomials is more difficult.
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Numerical Analysis

Unit-7: Boundary Value Problem

Table Solution of the Eigenproblem
zZ k k(exact) Error, %
1.618 +3.090 tn = 43.142 FL.66
0.618 +5.878 +2n = +6.283 F6.45
—-0.618 +8.090 +3n = £9.425 F14.16
—1.618 +9.511 +4n = +£12.566 F24.31
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Example: A line of wells to be drilled in an
alluvial aquifer as shown in the next Figure . The
wells are equally spaced along a line 600 ft from
the river. An impermeable barrier is located
parallel to the river and 1000 ft from the river.
Each well is pumped at a rate of 12 fi'/s.
Determine  the streamline and constant
piczometric head pattern, and the velocity at
point P. Assume that the aquifer is confined with
a depth of 100 ft.

Solution:

Considering the geometry of the flow field will
show us that the flow pattern in AEFD will have
a flow pattern exactly like that within EGHF.
Thus, we need to solve for the flow pattern
within AEFD only, since that solution will apply
to EGHF and other similar areas such as ADKL..
Further consideration of the geometry of AEFD
also shows that we can expect the flow pattern
within ABCD to be mirror image of that within
BEFC or ADMN. Therefore we need to solve for
the flow pattern in ABCD only, since that
solution will apply to all other similar areas in the
flow field.

6 ft'/s

B s A X Yy l

6 /s

(a)

1200 N | 1200 1t
T
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