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Unit-0: Introduction 
 

Syllabus 
 
Introduction to Numerical Analysis 
 
Part-I: Basic Tools 

 
Unit-1: Error Analysis 

• Measuring Errors 

• Sources of Error 

• Consistency, Order, Smoothness and Convergence 

 
Unit-2: Roots of equations (Nonlinear Equations) 

• Bisection Method 

• False-Position Method (Optional) 

• Newton-Raphson Method 

• Secant Method (Optional)  

 
Unit-3: Simultaneous Linear algebraic Equations 

• Direct Methods  

- Review of Determinants and Matrices 

- Cramer’s Rule 

- Gauss-Elimination method (simple and partial pivoting methods) 

- Gauss-Jordan Method 

- Matrix Inversion method 

• Indirect (Iterative) Method 

- Jacobi Method  

- Gauss-Seidel Method 

- Successive Over-Relaxation Method 

 
 
Unit-4: Numerical Differentiation and Integration 

- Numerical differentiation using difference method  

- Numerical Integration, Trapezoid and Simpson’s Rules 

- Extrapolation of Errors 

 
Unit-5: Interpolation and Curve Fitting 

- Direct Fit Polynomial 

- Least Squares Method 

- Logarithmic regression (Optional) 

- Exponential regression (Optional) 
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- Linear interpolation , Quadratic Interpolation 

- Lagrange Interpolation (Optional) 

- Newton Divided Difference Interpolation (Optional) 

 

 
Part-II: Numerical Solutions of Ordinary Differential Equations 

 
Unit-6: Initial Value Problem 

- Euler’s Method 

- Runge-Kutta 2nd 

- Runge-Kutta 4th 

- Higher Order Equations 

 

Unit-7: Boundary Value Problem 
- Equilibrium (Finite Difference) Method 

 
Part-III: Numerical Solutions of Partial Differential Equations 

 
Unit-8: PDEs 

- Elliptic Equations 

- Parabolic Equations 

- Hi-parabolic Equations 

- Advanced Application (Case Studies based on each department interests). 

 

References: 

- Numerical Methods for Engineers, S. C. Chapra and R. P Canale, McGraw-Hill, 6th edition 

2010. 

- Numerical Methods for Engineers and Scientists by Joe D. Hoffman, 2nd Edition. 

- Lectures on Numerical Analysis by Dennis Deturck and Herbert S. Wilf. 

- Numerical Analysis Using MATLAB® and Excel® by Steven T. Karris, 3rd Edition. 

- Numerical Methods in Engineering with MATLAB® by Jaan Kiusalaas. 

- Engineering Analysis- Interactive Methods and Programs with FORTRAN, QuickBasic, 

MATLAB, and Mathematica by Y. C. Pao.  

ي  - 
-التحليل الهندسي والعددي التطبيق  ي ومحمود عطا الله مشكور.  

د. حسن مجيد حسون الدلق     
 
 
Assessment method: 
 
30% course exam, 10% homework and self-initiative, 10% Lab, and 50% final exam. 
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Introduction: 
Numerical calculations obviously involve the manipulation (i.e., addition, multiplication, etc.) 

of numbers. Numbers can be integers (e.g., 4, 17, -23, etc.) fractions (e.g., 1/2, -2/3, etc.), or 

an infinite string of digits (e.g., Π=3.1415926535...).  

 

Wikipedia: Numerical Analysis is the study 

of algorithms that use numerical approximation (as 

opposed to symbolic manipulations) for the 

problems of mathematical analysis. It is the study of 

numerical methods that attempt at finding 

approximate solutions of problems rather than the 

exact ones. Numerical analysis finds application in 

all fields of engineering and the physical sciences, 

and in the 21
st
 century also the life and social 

sciences, medicine, business and even the arts. 

Current growth in computing power has enabled the 

use of more complex numerical analysis, providing 

detailed and realistic mathematical models in 

science and engineering. Examples of numerical 

analysis include: ordinary differential equations as 

found in celestial mechanics (predicting the motions 

of planets, stars and galaxies), numerical linear 

algebra in data analysis and stochastic differential 

equations and Markov chains for simulating living 

cells in medicine and biology. 

Before modern computers, numerical methods often relied on hand interpolation formulas, 

using data from large printed tables. Since the mid-20th century, computers calculate the 

required functions instead, but many of the same formulas continue to be used in software 

algorithms.  

The numerical point of view goes back to the earliest mathematical writings. A tablet from 

the Yale Babylonian Collection (YBC 7289), gives a sexagesimal numerical approximation of 

the square root of 2, the length of the diagonal in a unit square. 

Numerical analysis continues this long tradition: rather than giving exact symbolic answers 

translated into digits and applicable only to real-world measurements, approximate solutions 

within specified error bounds are used. 

 

 

 

 

 

 

 

 

 

 

Babylonian clay tablet YBC 7289 (c. 1800–

1600 BC) with annotations. The 

approximation of the square root of 2 is 

four sexagesimal figures, which is about 

six decimal figures. 1 + 24/60 + 51/602 + 

10/603 = 1.41421296…  

 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Approximation
https://en.wikipedia.org/wiki/Symbolic_computation
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Celestial_mechanics
https://en.wikipedia.org/wiki/Numerical_linear_algebra
https://en.wikipedia.org/wiki/Numerical_linear_algebra
https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Numerical_method
https://en.wikipedia.org/wiki/Interpolation
https://en.wikipedia.org/wiki/Yale_Babylonian_Collection
https://en.wikipedia.org/wiki/YBC_7289
https://en.wikipedia.org/wiki/Sexagesimal
https://en.wikipedia.org/wiki/Square_root_of_2
https://en.wikipedia.org/wiki/Diagonal
https://en.wikipedia.org/wiki/Unit_square
https://en.wikipedia.org/wiki/YBC_7289
https://en.wikipedia.org/wiki/Square_root_of_2
https://en.wikipedia.org/wiki/Sexagesimal
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/File:Ybc7289-bw.jpg
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Example: 

A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute velocity 

prior to opening the chute. The drag coefficient is equal to 12.5 kg/s. 

 

Analytical Solution: 

 

𝐹 = 𝑚𝑎 ⇒           𝑎 =
𝐹

𝑚
  

 

Where:  

F = net force acting on the body (N, or kg m/s2),  

m = mass of the object (kg),  

a = acceleration (m/s
2
). 

 
𝑑𝑣

𝑑𝑡
=

𝐹

𝑚
  

 

𝐹 = 𝐹𝐷 + 𝐹𝑈   

 

𝐹𝐷 = 𝑚𝑔                        (g=9.81 m/s
2
) 

 

𝐹𝑈 = −𝑐𝑣                      (c=dragging coefficient kg/s)   

 
𝑑𝑣

𝑑𝑡
=

𝑚𝑔−𝑐𝑣

𝑚
  

 
𝑑𝑣

𝑑𝑡
= 𝑔 −

𝑐

𝑚
𝑣 , this is a differential equation having the analytical solution: 

 

𝑣(𝑡) =
𝑔𝑚

𝑐
[1 − 𝑒

−(
𝑐

𝑚
)𝑡

]  

 

𝑣(𝑡) =
9.81(68.1)

12.5
[1 − 𝑒

−(
12.5

68.1
)𝑡

] = 53.44(1 − 𝑒−0.18355𝑡)  
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Numerical Solution: 

 
𝑑𝑣

𝑑𝑡
≅

∆𝑣

∆𝑡
=

𝑣(𝑡𝑖+1)−𝑣(𝑡𝑖)

𝑡𝑖+1−𝑡𝑖
  

 
𝑑𝑣

𝑑𝑡
= lim

∆𝑡→0

∆𝑣

∆𝑡
  

 
𝑣(𝑡𝑖+1)−𝑣(𝑡𝑖)

𝑡𝑖+1−𝑡𝑖
= 𝑔 −

𝑐

𝑚
𝑣(𝑡𝑖)  

 

 

This equation can be rearranged to be: 

 

 

𝑣(𝑡𝑖+1) = 𝑣(𝑡𝑖) + [𝑔 −
𝑐

𝑚
𝑣(𝑡𝑖)] (𝑡𝑖+1 − 𝑡𝑖)  

 

New value = old value + slope × step size 

This approach is formally called Euler’s method and will be discussed thoroughly in Part-II. 

 

Hence: 

1: t = 0 to 2 s 

𝑣 = 0 + [9.81 −
12.5

68.1
(0)] 2 = 19.62 𝑚/𝑠  

 

2: t=2 to 4 s 

𝑣 = 19.62 + [9.81 −
12.5

68.1
(19.62)] 2 = 32.04 𝑚/𝑠  

 

And so on… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∞ ≅ 1000000 



 
Numerical Analysis 

DWE3214 

 

PART-I: BASIC TOOLS 

 

Unit-1: Error Analysis 

 
 
 
 
 
 

Dr. Zaid Al-Azzawi 
 

University of Al-Anbar 
College of Engineering 

 
 

2022/2023 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Numerical Analysis                                                                                                       Unit-1: Error Analysis                                      
___________________________________________________________________________  

Page 2 of 13 
 

Unit-1: Error Analysis 
 
Introduction: 
Numerical calculations obviously involve the manipulation (i.e., addition, multiplication, etc.) 

of numbers. Numbers can be integers (e.g., 4, 17, -23, etc.) fractions (e.g., 1/2, -2/3, etc.), or 

an infinite string of digits (e.g., Π=3.1415926535...). When dealing with numerical values and 

numerical calculations, there are several concepts that must be considered: 

   

1. Significant digits, 

2. Precision and accuracy, 

3. Errors, 

4. Number representation. 

 

 

Significant digits 
The significant digits, or figures, in a number are the digits of the number which are known 

to be correct. Engineering and scientific calculations generally begin with a set of data having 

a known number of significant digits. When these numbers are processed through a numerical 

algorithm, it is important to be able to estimate how many significant digits are present in the 

final computes result. 

 

 

Precision and Accuracy 
Precision refers to how closely a number represents the number it is representing. Accuracy 

refers to how closely a number agrees with the true value of the number it is representing. 

Precision is governed by the number of digits being carried in the numerical calculations. 

Accuracy is governed by the errors in a numerical calculation. 
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Errors 
The accuracy of a numerical calculation is quantified by the error of the calculation. Several 

types of error can occur in numerical calculations. 

 
1. Errors in the parameters of the problem (assumed nonexistent). 

2. Algebraic errors in the calculations (assumed nonexistent). 

3. Iteration errors. 

4. Approximation errors. 

5. Roundoff errors. 

6. Truncation errors. 

 
Iteration error is the error in an iterative method that approaches the exact solution of 

an exact problem asymptotically. Iteration errors must decrease toward zero as the iterative 

process progresses. The iteration error itself may be used to determine the successive 

approximations to the exact solution. Iteration error can be reduced the limit of the computing 

device. The errors in the solution of a system of linear algebraic equations by the successive 

over-relaxation (SOR) is an example of this type of errors. 

 
Approximation error is the difference between the exact solution of an exact problem 

and the exact solution of an approximation of the exact problem. Approximation error can be 

reduced only by choosing a more accurate approximation of the exact problem. The error in 

the approximation of a function by a polynomial is an example of this type of errors. The error 

in the solution of a differential equation where the exact derivatives are replaced by algebraic 

difference approximations, which have truncation errors, is another example of this type of 

error. 

 

Roundoff error is the error caused by the finite word length employed in the 

calculations. Roundoff error is more significant when small differences between large 

numbers are calculated. Most computers have either 32 bit or 64-bit word length, 

corresponding to approximately 7 or 13 significant decimal digits, respectively. Some 

computers have extended precision capability, which increases the number of bits to 128. Care 

must be exercised to ensure that enough significant digits are maintained in numerical 

calculations so that Roundoff is not significant. 
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For all error types, the relationship between the exact, or true, result and the approximation 

can be formulated as  

 
𝑻𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆 =  𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏 +  𝒆𝒓𝒓𝒐𝒓 

 

𝑬𝒕  =  𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆 −  𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏 

 
where Et is used to designate the exact value of the error. The subscript t is included to 

designate that this is the “true” error. 

 

𝑻𝒓𝒖𝒆 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒆𝒓𝒓𝒐𝒓 =  
𝒕𝒓𝒖𝒆 𝒆𝒓𝒓𝒐𝒓 

𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆
 

 

 

𝜺𝒕 =  
𝒕𝒓𝒖𝒆 𝒆𝒓𝒓𝒐𝒓 

𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆
× 𝟏𝟎𝟎% 

 

where 𝜀𝑡 designates the true percent relative error. 

 

 
Example: 

Suppose that you have the task of measuring the lengths of a bridge and a rivet and come up 

with 9999 and 9 cm, respectively. If the true values are 10,000 and 10 cm, respectively, 

compute (a) the true error and (b) the true percent relative error for each case. 

 
Solution: 

(a) The error for measuring the bridge is 

 

𝐸𝑡  =  𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 –  𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛  

 

𝐸𝑡  =  10,000 −  9,999 = 1 𝑐𝑚  
 

And for the rivet is: 

 

𝐸𝑡  =  10 −  9 = 1 𝑐𝑚  
 

(b) The percent relative error for the bridge is 

 

𝜀𝑡 =  
𝑡𝑟𝑢𝑒 𝑒𝑟𝑟𝑜𝑟 

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
× 100%  

 

𝜀𝑡 =  
1 

10,000
× 100% = 0.01%  

 
And for the rivet is: 

 

𝜀𝑡 =  
1 

10
× 100% = 10% . 
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However, in real-world applications, we will obviously not know the true answer a priori. For 

these situations, an alternative is to normalize the error using the best available estimate of 

the true value, that is, to the approximation itself, as in 

 

𝜺𝒂 =  
𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝒆𝒓𝒓𝒐𝒓 

𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝒗𝒂𝒍𝒖𝒆
× 𝟏𝟎𝟎% 

 
 

For iterative approach, the error is often estimated as the difference between previous and 

current approximations. Thus, percent relative error is determined according to 

   

 

𝜺𝒂 =  
𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒏 − 𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏 

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒏
× 𝟏𝟎𝟎% 

 

 
It is also convenient to relate these errors to the number of significant figures in the 

approximation. It can be shown that if the following criterion is met, we can be assured that 

the result is correct to at least n significant figures. 

 
𝜺𝒔 = (𝟎. 𝟓 × 𝟏𝟎𝟐−𝒏)% 

 

 
If this relationship holds, our result is assumed to be within the prespecified acceptable 

Level 𝜀𝑠 

 

 

 

Example: 

For the following Maclaurin expansion of 𝑒𝑥
, calculate the error iteratively for x=0.5 to three 

significant digits, knowing that 𝑒𝑥0.5 = 1.648721 … 

 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2
+

𝑥3

3!
+ ⋯ +

𝑥𝑛

𝑛!
 

 

Solution: 
 

𝜺𝒔 = (𝟎. 𝟓 × 𝟏𝟎𝟐−𝒏)% = (𝟎. 𝟓 × 𝟏𝟎𝟐−𝟑)% = 𝟎. 𝟎𝟓%  
 

 

Taking the series one by one: 

 

𝑒𝑥 = 1  

 

𝑒𝑥 = 1 + 𝑥 = 1 + 0.5 = 1.5  

 

𝜺𝒕 =  
𝒕𝒓𝒖𝒆 𝒆𝒓𝒓𝒐𝒓 

𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆
× 𝟏𝟎𝟎% =

𝟏.𝟔𝟒𝟖𝟕𝟐𝟏−𝟏.𝟓

𝟏.𝟔𝟒𝟖𝟕𝟐𝟏
× 𝟏𝟎𝟎% = 𝟗. 𝟎𝟐%  
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𝜺𝒂 =  
𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝒆𝒓𝒓𝒐𝒓 

𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝒗𝒂𝒍𝒖𝒆
× 𝟏𝟎𝟎% =

𝟏.𝟓−𝟏

𝟏.𝟓
× 𝟏𝟎𝟎% = 𝟑𝟑. 𝟑%  

 

 

Because 𝜀𝑎 is not less than the required value of 𝜀𝑠, we would continue the computation by 

adding another term, 
𝑥2

2!
 and repeating the error calculations. The process is continued until 

𝜀𝑎 , es. The entire computation can be summarized as 
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Truncation Errors and the Taylor Series 
 
Truncation errors are those that result from using an approximation in place of an exact 

mathematical procedure. For example, the derivative of  velocity of a falling parachutist 

may be approximated by a finite-divided-difference equation of the form: 

 

𝑑𝑣

𝑑𝑡
≅

∆𝑣

∆𝑡
=

𝑣(𝑡𝑖+1) − 𝑣(𝑡𝑖)

𝑡𝑖+1 − 𝑡𝑖
 

 

A truncation error was introduced into the numerical solution because the difference equation 

only approximates the true value of the derivative 
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Example:  Find Maclaurin for sin(x), cos(x), and e
x
? 

 
Solution: 

 

nn xf
n

xfxffxf )0(
!

1
...........)0(''

!2

1
)0(')0()( )(2 ++++=  

 

1)0(cos)(

0)0(sin)(

1)0('''cos)('''

0)0(''sin)(''

1)0('cos)('

0)0(sin)(

)5()5(

)4()4(

==

==

−=−=

=−=

==

==

fxxf

fxxf

fxxf

fxxf

fxxf

fxxf

  

 
 

.......
!7

1
0

!5

1
0

!3

1
00)( 753 +−+++−++= xxxxxf  

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 
 

12
1

753

!)12(

)1(
............

!7

1

!5

1

!3

1
sin −

−

−

−
++−+−= n

n

x
n

xxxxx  

22
1

642

!)22(

)1(
............

!6

1

!4

1

!2

1
1cos −

+

−

−
++−+−= n

n

x
n

xxxx  

nx x
n

xxxe
!

1
............

!3

1

!2

1
1 32 +++++=  
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Example: Solve dx
x

e x


1

2/1

 

 
Solution: 

nx x
n

xxxe
!

1
............

!3

1

!2

1
1 32 +++++=  

 

1

2/1

432

32

1

2/1

........
!44

1

!33

1

!22

1
ln

............
!4

1

!3

1

!2

1
1

1









+


+


+


++=









+++++=

xxxxx

dxxxx
x

dx
x

e x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Numerical Analysis                                                                                                       Unit-1: Error Analysis                                      
___________________________________________________________________________  

Page 11 of 13 
 

Consistency, Order, Smoothness and Convergence 

There are several important concepts which must be considered when developing finite difference 

approximation of initial-value differential equations. they are (a) consistency, (b) order, (c) stability, and 

(d) convergence. 

- A FDE is consistent with an ODE if the difference between them (i.e., the truncation error) vanishes 

as 0→t . In other words, the FDE approaches the ODE. 

 

- The order of a FDE is the rate at which the global error decreases as the grid size approaches 

zero. 

 

- A FDE is stable if it produces a bounded solution for a stable ODE and is unstable if it produces 

an unbounded solution for a stable ODE. 

 

- A finite difference method is convergent if the numerical solution of the FDE (i.e., the numerical 

values) approaches the exact solution of the ODE as 0→t  
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MATLAB APPLICATIONS 
 
function [v,ea,iter] = IterMeth(x,es,maxit) 

% initialization e(x) 

iter = 1; 

sol = 1; 

ea = 100; 

% iterative calculation 

while (1) 

solold = sol; 

sol = sol+x^iter/factorial(iter); 

iter = iter+1; 

if sol~=0 

ea=abs((sol-solold)/sol)*100; 

end 

 

 
>> [val, ea, iter] = IterMeth(1,0.000001,100) 
 
val =     2.7183 
 
ea =   9.2162e-07 
 
iter =    12 
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function diffex(func,dfunc,x,n) 

format long 
dftrue=dfunc(x); 
h=1; 
H(1)=h; 
D(1)=(func(x+h)-func(x-h))/(2*h); 
E(1)=abs(dftrue-D(1)); 
for i=2:n 
h=h/10; 
H(i)=h; 
D(i)=(func(x+h)-func(x-h))/(2*h); 
E(i)=abs(dftrue-D(i)); 
end 

 

 
>> ff=@(x) -0.1*x^4-0.15*x^3-0.5*x^2-0.25*x+1.2; 
>> df=@(x) -0.4*x^3-0.45*x^2-x-0.25; 
>> diffex(ff,df,0.5,11) 
 step size finite difference true error 
  1.0000000000 -1.26250000000000  0.3500000000000 
  0.1000000000 -0.91600000000000  0.0035000000000 
  0.0100000000 -0.91253500000000  0.0000350000000 
  0.0010000000 -0.91250035000001  0.0000003500000 
  0.0001000000 -0.91250000349985  0.0000000034998 
  0.0000100000 -0.91250000003318  0.0000000000332 
  0.0000010000 -0.91250000000542  0.0000000000054 
  0.0000001000 -0.91249999945031  0.0000000005497 
  0.0000000100 -0.91250000333609  0.0000000033361 
  0.0000000010 -0.91250001998944  0.0000000199894 
  0.0000000001 -0.91250007550059  0.0000000755006 
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Unit-2: Roots of Nonlinear Equations 
Introduction: 
To solve  𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 we usually us the quadratic formula (قانون الدستور) 

   

𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 to find the roots of the function that will make the function f(x)=0 

 

Although the quadratic formula is handy for solving 2
nd

 degree equations, there are many 

other functions for which the root cannot be determined so easily. For these cases, different 

numerical methods shall be provided as an efficient means to obtain the answer. 

 

1- Closed (Bracketing) Methods 
 

The Bisection Method: 
 
Step 1: Choose lower xL and upper xu guesses for the root such that the function 

changes sign over the interval. This can be checked by ensuring that f(xL)f(xu) 

< 0. 

Step 2: An estimate of the root xR is determined by 𝑥𝑅  =
 𝑥 𝐿+ 𝑥𝑈

2
. 

 

Step 3: Make the following evaluations to determine in which subinterval the root 

lies: 

(a) If f(xL)f(xR) < 0, the root lies in the lower subinterval. Therefore, set xu = xR and return 

to step 2. 

(b) If f(xL)f(xR) > 0, the root lies in the upper subinterval. Therefore, set xL = xR and return 

to step 2. 

(c) If f(xL)f(xR) = 0, the root equals xR; terminate the computation. 
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Example: 

Use the bisection method to determine the drag coefficient c needed for a parachutist of mass 

m = 68.1 kg to have a velocity of 40 m/s after freefalling for time t = 10 s?  

Note: The acceleration due to gravity is 9.81 m/s2. 

 

Solution: 

 

𝑓(𝑐) =
9.81(68.1)

𝑐
(1 − 𝑒

−(
𝑐

68.1
)10

) − 40  

 

or 

 

𝑓(𝑐) =
668.06

𝑐
(1 − 𝑒−0.146843𝑐) − 40  

 

 

The first step in bisection is to guess two values of the unknown (in the present problem, c) 

that give values for f(c) with different signs. We can see that the function changes sign between 

values of 12 and 16. Therefore, the initial estimate of the root xR lies at the midpoint of the 

interval 

 

𝑥𝑅 =
12+16

2
= 14                                                                                                              (𝜀𝑡 = 5.3%)  

 

𝑓(12)𝑓(14) = 6.114(1.611) = 9.850 > 0 ⟹ 𝑥𝐿 = 𝑥𝑅 = 14  

 

Repeat the step: 

 

𝑥𝑅 =
14+16

2
= 15                                                                                                              (𝜀𝑡 = 1.3%)               

 

𝑓(14)𝑓(15) = 1.611(−0.348) = −0.619 < 0 ⟹ 𝑥𝑈 = 𝑥𝑅 = 15  

 

 

Repeat the step: 

 

𝑥𝑅 =
14+15

2
= 14.5                                                                                                         (𝜀𝑡 = 2.0%) 

 

𝑓(14)𝑓(14.5) = 1.611(0.593) = 0.956 > 0 ⟹ 𝑥𝐿 = 𝑥𝑅 = 14.5  

 

 

The method can be repeated until the result is accurate enough to satisfy your needs. 

Note: the root of this equation is (c = 14.8011). 
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In this case we need a termination criterion: 

 

𝜀𝑎 = |
𝑥𝑅

𝑛𝑒𝑤−𝑥𝑅
𝑜𝑙𝑑

𝑥𝑅
𝑛𝑒𝑤 | 100%  

 

 

Each time we calculate the approximate error (because we do not know the true error) and 

stop the loop when the accuracy condition is satisfied. 

 

For example: 𝜀𝑎 = |
15−14

15
| 100% = 6.667%  Recall that the true error was only 1.3%! 
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2- Open Methods 
 
The Newton-Raphson Method: 
 

The Newton-Raphson method can be derived on the basis of this geometrical interpretation 

(an alternative method based on the Taylor series). 

 

The first derivative at x is equivalent to the slope 

 

𝑓́(𝑥𝑖) =
𝑓(𝑥𝑖)−𝑓(𝑥𝑖+1)

𝑥𝑖−𝑥𝑖+1
   

 

the 𝑓(𝑥𝑖+1) = 0 as can be seen from the figure 

 

Which can be rearranged to yield 

 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓́(𝑥𝑖)
  

 

 

Example: 

Use the Newton-Raphson method to estimate the root of  𝑓(𝑥) = 𝑒−𝑥 − 𝑥 , employing an 

initial guess of   𝑥0 = 0 ? 

 

 

Solution: 

 

𝑓́(𝑥) = −𝑒−𝑥 − 1  
 

Newton-Raphson: 

 

𝑥𝑖+1 = 𝑥𝑖 −
−𝑒(−𝑥𝑖)−𝑥𝑖

−𝑒(−𝑥𝑖)−1
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Newton-Raphson Method for Systems of Non-linear Equations: 
 

 

 

 

 

 

 

 

 

 

For example:  

 

 

 

and                                                   ⟺          

 

 

 

the solution would be the values of x and y that make the functions u(x, y) and y(x, y) equal 

to zero. 

 

 

 

 

  

 

 

For system of non-linear equations: 

 

 

 

 

and 

 

 

 

 

 

 

 

 

 

 

 



Numerical Analysis                                                                                             Unit-2: Roots of Equations                                      
___________________________________________________________________________  

Page 7 of 8 
 

 

Just as for the single-equation version, the root estimate corresponds to the values of x and 

y, where 𝑢𝑖+1 and 𝑣𝑖+1 equal zero leading to 

 

 

 

 

 

 

 

 

Consequently, algebraic manipulations (for example, Cramer’s rule) can be employed to 

solve for 

 

 

 

 

 

 

 

 

 

 

 

 

 

The denominator of each of these equations is formally referred to as the determinant of the 

Jacobian of the system. 

 

 

Example: Solve the following system of non-linear equations, Initiate the computation with 

guesses of x = 1.5 and y = 3.5 ? 

 

 

 

 

Solution: 

 

First compute the partial derivatives and evaluate them at the initial guesses of x and y: 
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Thus, the determinant of the Jacobian for the first iteration is  

 

6.5(32.5) - 1.5(36.75) = 156.125 
 

The values of the functions can be evaluated at the initial guesses as 

 

 

 

 

 

These values can be substituted into the equation to give 

 

 

 

 

 

MATLAB APPLICATIONS 
 
Thus, the results are converging to the true values of x = 2 and y = 3. The computation can 

be repeated until an acceptable accuracy is obtained. 
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Unit-3: Simultaneous Linear algebraic Equations 
 

 

DETERMINANTS 
 
For every matrix of order n, i.e., for every n×n matrix A, the corresponding value of the 

determinant function is denoted by either |A| or det A.  

 

A

aaa

aaa

aaa

A

Amatrix

aaa

aaa

aaa

A

nnnn

n

n

nnnn

n

n

det

21

22221

11211

21

22221

11211

=





















=



















 

 

 
The determinant |M| formed by the m2 elements common to any m rows and any m columns 

of an nth-order determinant |A| is said to be an m
th
-order minor of |A|. The determinant of 

order n – m formed by the array of elements which remains when the m rows and m columns 

containing an m
th
-order minor |M| are deleted from |A| is called the complementary minor of 

|M|. 

 

If the numbers of the rows and columns of |A| which contain an m
th
-order minor |M| are, 

respectively,  

 

mm jjjandiii ,,,,,, 2121    

 

then 
mm iiiiii +++++++

−
 2121)1( times the complementary minor of |M| is called the algebraic 

complement and/or (cofactors) of |M|. 

 

We shall denote the complementary minor of the element aij by the symbol Mij and its algebraic 

complement (cofactor) by the symbol Aij ; thus 

 

ij

ji

ij MA +−= )1(
which is for the first order 

 

And for the second order complementary minor and its algebraic complement (cofactor) we 

use 

 

 klij

lkji

klij MA ,, )1( +++−=  where i,j are the rows and k,l are the columns. 
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Example: In the fifth-order determinant, 

 

5554535251

4544434241

3534333231

2524232221

1514131211

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

A =  

 
the complementary minor of the element a43 is the fourth-order determinant formed by the 

elements which remains when the fourth row and the third column are deleted from |A|, 

namely,  

 

55545251

35343231

25242221

15141211

3,4

55545251

35343231

25242221

15141211

3,4

aaaa

aaaa

aaaa

aaaa

M

aaaa

aaaa

aaaa

aaaa

M ==











 

 
the cofactor A4,3 of the element a4,3 is equal to this complementary minor times (-1)

4+3
; that is, 

 

3,43,4

34

3,4 )1( MMA −=−= +  

 

Similarly, the complementary minor of the second-order minor 
5451

3431

aa

aa
a35,14 =  contained in 

the third and fifth rows and the first and fourth of |A| is the third order determinant formed by 

the elements which remain when these rows and columns are deleted from |A|: 

 

454342

252322

151312

14,35

454342

252322

151312

14,35

aaa

aaa

aaa

M

aaa

aaa

aaa

M ==











  

 
The algebraic complement (cofactor) A35,14 of the given second-order minor is equal to the 

complementary minor M35,14 times (-1)
3+5+1+4

; that is, 

 

14,3514,3514,35

4153

14,35 )1( MAMA −=−= +++  
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Simplification for 2nd and 3rd order determinants: 
 

For 2nd order matrix: 
 

21122211

2221

1211

21122211

2221

1211

)(

)(

det

aaaa

aa

aa

aaaaA

aa

aa
A

−=

−

+

−=









=





  

 

For 3rd order matrix: 
 
A general third-order determinant can be expanded using the former equations: 

 

     

332112322311312213322113312312332211

312232211331233321123223332211

3231

2221

13

3331

2321

12

3332

2322

11

333231

232221

131211

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaa

aa

aa
a

aa

aa
a

aa

aa
a

aaa

aaa

aaa

−−−++=

−+−−−=

+−=

 

The expansion can also be obtained by diagonal multiplication, by repeating on the right the 

first two columns of the determinate and then adding the signed products of the elements on 

the various diagonals in the resulting array: 

 

DEFINITION 1: The determinant of a matrix with a single element is that 

element. For every matrix A of order 2n , 

 


=

=+++=
n

k

kknn AaAaAaAaA
1

111112121111det   
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3231

2221

1211

333231

232221

131211

)()()(

)()()(

aa

aa

aa

aaa

aaa

aaa

















−−−

+++

 

 

 

 

 
Example: Evaluate the forth-order determinant 
 

2461

3210

1234

4321

−

−
=A  

 

 
Solution: Using the third row 

 

columnfirstthegubyeasilyresultsametheobtaincanwe

A

A

sin

150105180750

461

234

321

)3(

261

134

421

)2(

241

124

431

)1(

246

123

432

)0(

=−++=

−

−

+

−

−−

−

=

   

 

 

 

 

 

PROPERTY 1: For every matrix A of order n, and for each i such that ,1 ni    

 





=

=

=



=

n

k

jkjk

n

k

ikik

AaA

njeachforand

AaA

1

1

1

det

   

 

Which means that we can use any row or column to evaluate the determinate and 

of course any raw or column with a lot of zero element is preferred. 
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Example: for the matrix 

















−=

3149

025

001

A  show that AAT detdet = . 

Solution: Expanding successive determinants by elements of their first rows, we find: 

 

6)3()2()1(
314

02
)1(

3149

025

001

det −=−=
−

=−=A  

 
Expanding successive determinants by elements of their first columns, we find: 

 

AAT det6)3()2()1(
30

142
)1(

300

1420

951

det =−=−=
−

=−=  

 
Both A and A

T
, in the previous example, are triangular matrices and the determinant of either 

matrix is equal to the product of its diagonal elements. 

 

 

 

 

See the previous example. 

 

 

 

 

 

 

 

 

 

PROPERTY 2: For every square matrix A, AAT detdet = . 

PROPERTY 3: If A is a triangular matrix of order n, then 

 

 nnaaaA 2211det =    
=

=
n

i

iiaA
1

,det  

 

that is to say the determinant of a triangular matrix is equal to the product of 

its diagonal elements. 

PROPERTY 4: If a square matrix A has either a zero row or a zero column, 

then: 

 

det A= 0 
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Example: Find |A| of 

















−=

204

606

305

A   

 
Solution: Applying the expansion by elements of the second column, we find that 

0
66

35
)0(

24

35
)0(

24

66
)0(

204

606

305

=
−

−+
−

−=−  

 

 

 

 

 

 

 
Example: Evaluate if the 2

nd
 row is factored by 2 and the 2

nd
 column is factored by 3? 

231

064

593

−−

 

Solution: 

First, we evaluate the determinant and then multiply by (2×3): 

 

396)66(6)7203060036(6

31

64

93

231

064

593

32 −=−=−−+−+=

−−−−

  

 
Second, we multiply the determinants by the factors and solve: 

 

donearewe396)43201803600216(

91

368

273

291

0368

5273

291

0368

5273

231

064

593

32

−=−−+−+=

−−−−

−−

=

−−



 

 

PROPERTY 5: If each element in one row or column of a determinant is 

multiplied by a number c, the value of the determinant is multiplied by c too. 
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Example: Determine the number k such that 

 

36

560

331

321

=

−

−+−

−

kkk  

Solution: 

 
With –k regarded as the binomial 0-k, the elements of the second row of the given determinant 

become binomial; hence 

 

kkkkkkkk +=

−

−−

−

+=

−

−−

−

+

−

−

=

−

−+−

−

23

560

131

321

23

560

3

321

560

310

321

560

331

321

 

 
Which equals 36 if and only if k=13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROPERTY 6:  If   njj vgfvA  += 1        is a square matrix, then 

   njnj vgvvfvA  11detdet +=  

 

What this property says is that, if each element in one column (raw) of a 

determinant is expressed as a binomial, the determinant can be written as the 

sum of two determinants. Specifically, 

 

  

 

 

A like result holds for determinants containing a row of elements which are 

binomials. 

PROPERTY 7:  If B is a matrix obtained by interchanging any two rows 

(columns) of a square matrix A, det B = - det A.  

PROPERTY 8:  If one row (column) vector of a square matrix A is equal to 

a number c times some other row (column) vector, then |A| = 0  



Numerical Analysis                                                      Unit-3: Simultaneous Linear algebraic Equations 
___________________________________________________________________________  

Page 9 of 43 
 

Example: Evaluate the determinant 

 

696

523

232

−

−

−

=A  

Solution:  

          0

696

523

232

  =

−

−

−

 

 
it is apparent that each element of the third row is equal to -3 times the corresponding element 

of the first row; hence, |A| = 0 

 

 

 

Hint: this property is very useful especially with large determinants. 

 

 

 
Example: Find the value of the determinant  

 

23211

52315

13241

24130

12113

−

−−

−

 

 

 

 

 
Solution: 

To introduce as many zeros as possible in some rows (columns): 

1) Add the 3
rd

 column to the 2
nd

 and the 5
th
. 

2) Add twice the 3
rd

 column to the 4
th
. 

3) Add 3 times the 3
rd

 column to the 1
st
. 

 

This gives the new but equal determinant: 

 

PROPERTY 9:  If a matrix B is obtained from a square matrix A by adding 

to one row (column) vector of A a number c times a different row (column) 

vector, then det B = det A. 
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47235

24344

37267

36143

00100

−−−−

−

    

 
Expanding this in terms of the first row, according to property 1, we have: 

 

 
=

=
n

k

ikik AaA
1

det  

 

klij

lkji

klij MA ,, )1( +++−=  

00

4735

2444

3767

3643

)1()1(00det 31 ++
−−−

−−++= +A  

 
Now to simplify the 4

th
 order determinant too: 

 

Add twice the last column to each of the first three; we obtain the equal determinant, 

 

4151113

2000

3131213

312109

−  and expanding in terms of the 3
rd

 row,  

 

151113

131213

12109

)1()2( 43+−−    

 
We can now simplify this by further row or column manipulations, or, since it is of the 3

rd
 

order, we can expand it by the diagonal method, the result is -166. 

 

 
 

 

 

Example: For the matrices: 

 

















−

−

−−

=

















−−

−

−

=

1032

614

1223

132

452

301

BA   

PROPERTY 10:  If A and B are matrices of the same order, then 

 
)(det)(det)(det ABBA =  
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We verify directly that  )(det)(det)(det ABBA =  

 

Add 3 times the first column of det A to its 3
rd

 column, we have: 

 

53035
13

105
)1(

732

1052

001

det 2 =−=
−

−
−=

−−

−=A  

 
Add 2 times the 2

nd
 row to the 1

st
 row, and -3 times 2

nd
 row to the 3

rd
 row, of   det B, we find, 

 

4085
80

61
5

8010

614

005

det ==
−

=

−

−=B  

 
We next compute the matrix product AB from which we obtain: 

 

BA

AB

detdet

200)138133(40
196

237
)254(

3830

4635
)1()4(

010

38330

461135

4

814

14318

42119

4

32416

14318

42119

)(det

23

=

=−−=
−

−
−=

−

−
−=

−

−−

=

−

−

−−

=

−

−

−−

=

+
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MATRICES 
 
The fundamental quantity of linear algebra is the matrix. A matrix is an ordered rectangular 

array of numbers of mathematical expressions. We shall use upper case letters to denote them. 

The m×n matrix  

 



























=

mnmmm

ij

n

n

aaaa

a

aaaa

aaaa

A

...

.......

......

.......

...

...

321

2232221

1131211

 

 
has m rows and n columns. If m=n, the matrix is a square matrix; otherwise, A is rectangular. 

For a square matrix, the diagonal from the top left corner to the bottom right corner is the 

principal diagonal. 

 
From the limitless number of possible matrices, certain one appears with sufficient regularity 

that they are given special names. 

 

 
Zero Matrix: sometimes called a null matrix, has all of its elements equal to zero. 

 

Unit Matrix: the unit of identity matrix is a n×n matrix having 1's along the principal diagonal 

and zero everywhere else. 

 

Symmetric Matrix: a symmetric matrix is one where aij = aji for all i and j. 

 

 

 

Example: Examples of zero, Identity, and symmetric matrices are 

 

















=







=

















=

504

012

423

,
10

01
,

000

000

000

AIO  

 
respectively. 

 

 
Diagonal Matrix: a diagonal matrix is a n×n matrix having values along the principal 

diagonal and zero everywhere else. 
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Upper Triangular Matrix: an upper triangular matrix is a n×n matrix having values along 

the principal diagonal and the upper triangle. And zeros in 

the lower triangle. 

 

Lower Triangular Matrix: lower triangular matrix is a n×n matrix having values along the 

principal diagonal and the lower triangle. And zeros in the 

upper triangle. 

 

Example: Examples of Diagonal, Upper Triangular, and Lower Triangular Matrices are 

 

















−=





















−
=

















−=

1101

032

007

,

3000

2100

7950

4602

,

100

030

004

LUD  

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix Multiplication: 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Definition 1: Two matrices A and B are equal if and only if aij = bij for all 

possible i and j and they have the same dimensions. 

Definition 2: For two matrices A and B with the same dimensions 

(conformable for addition), the matrix C = A + B contains the elements cij = 

aij + bij. Similarly, C = A – B contains the elements cij = aij - bij. 

Because the order of addition does not matter, addition is cumulative: A + B = 

B + A. 

Definition 3: considering a scalar constant k. The product k×A is formed by 

multiplying every element of A by k. thus the matrix kA has elements equal      

to k×aij.  
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Matrix Multiplication: 
 
We begin by requiring that the dimension of A be m×n while for B they are n×p. That is, the 

number of columns in A must equal the number of rows in B. The matrices A and B are then 

said to be conformable for multiplication. If this is true, then C = A×B will be a matrix m×p, 

where its elements equal 

.
1


=

=
n

k

kjikij bac  

 

The right side of the equation is referred to as an inner product of the i
th
 row of A and the j

th
 

column of B. The product A×A is usually written A
2
; the product A×A×A is usually written 

A
3
; and so forth. 

 

Example: If 

 

   
   










−−
=










−+−+

+−+−
=









=









−

−
=

87

1411

)4)(3()2)(2()3)(3()1)(2(

)4)(4()2)(1()3)(4()1)(1(

43

21

32

41

BA

then

BandA

 

 
Matrix multiplication is associative and distributive with respect to addition: 

 

(kA) B = k (AB) = A (kB), 

A (BC) = (AB) C, 

(A+B) C= AC+BC 

C (A+B) = CA+CB 

On the other hand, matrix multiplication is not cumulative. In general, AB≠BA. 

 

Example: Does AB = BA if 

 

?
01

11

00

01








=








= BandA  

 

Because 
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.

01

01

00

01

01

11

00

11

01

11

00

01

BAAB

BA

and

AB











=
















=









=
















=

 

 
 

Matrix Transposition: 
Another matrix operation is transposition. The transpose of a matrix A with dimensions m×n 

is another matrix, written A
T
, where we have interchanged the rows and columns from A. 

Clearly, (A
T
)

T
 = A as well as (A+B)

T
 = A

T
+B

T
 and (kA)

T
 = kA

T
. If A and B are conformable 

for multiplication, then (AB)
T
 = B

T
 A

T
. Note the reversal of order between the two sides   

 

Example: Given A, find A
T
? 

 

















=

















=

814

753

6102

876

1510

432
TAA  

 

 

Matrix Inverse: 
A matrix A is said to be non-singular or invertible if there exists a matrix B such that AB = 

BA = I. This matrix B is the multiplicate inverse of A or simply the inverse of A, written A
-1
. 

An n×n matrix is singular if it does not have a multiplicative inverse.  

From preliminary Algebra we know that the inverse of any quantity Q is 
Q

1
 which is usually 

denoted as Q
-1
. 

 

1

1

1

1

=

=

−

−

QQ

Q
Q

 

 
The same equation is applicable for square matrix A, 

 
  

 

 

ijij

T

ij

aelementtheofcofactorarycomplementebricatheisA

whereAAadj

AmatrixtheofadjotheisAadj

AmatrixtheofantertheisA

where
A

Aadj
A

AA

)(lg

,

int

mindet

,

1

1

1

=

=

=

−

−
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Example: Find A
-1
 if 

 

+−

−

−=

















−

−=

132

213

301

421

213

301

421

RRA

A

 

 

7)815()1(
31

85
)1(1

213

301

805
23 =+−−=
−

−
−=

−

−

−

= +A
 

T

Aadj

01

21
)1(

31

41
)1(

30

42
)1(

13

21
)1(

23

41
)1(

21

42
)1(

13

01
)1(

23

31
)1(

21

30
)1(

332313

322212

312111

−
−

−
−−

−
−

−
−

−

−
−

−

−
−

−
−

=

+++

+++

+++

 

 

 

















=

















−

−

















−

−−

−

=

















−

−−

−

==

−

−−

−

=

−

−

100

010

001

213

301

421

251

7147

683

7

1

251

7147

683

7

1

251

7147

683

1

1

AA

Check

A

Aadj
A

Aadj
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SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 
 
Systems of linear algebraic equations can be expressed very compactly in matrix notation, 

such as, 


=

==



















=



















=



















=

n

j

ijij

nnnnnn

n

n

nibxa

writtenbecanOr

b

b

b

b

x

x

x

x

aaa

aaa

aaa

A

1

2

1

2

1

21

22221

11211

),........,1(

......

...

............

...

...

 

 
There are three so-called row operations that are useful when solving systems of linear 

algebraic equations. They are: 

 

1. Any row (equation) may be multiplied by a constant (a process known as scaling). 

2. The order of the rows (equations) may be interchanged (a process known as pivoting). 

3. Any row (equation) can be replaced by a weighted linear combination of that row 

(equation) with any other row (equation) (a process known as elimination). 

 

In the context of the solution of a system of linear algebraic equations, these three row 

operations clearly do not change the solution. 
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1. Direct Elimination Methods 
 
Cramer's Rule 
 
Although it is not an elimination method, Cramer's rule is a direct method for solving systems 

of linear algebraic equations. Consider the system of linear algebraic equations, Ax = b, 

which represents n equations. Cramer's rule states that the solution for xj (j=1,……,n) is given 

by: 

 

nj
A

A
x

j

j ,.......,1
)(det

)(det
==  

 

where [A 
j
] is n×n matrix obtained by replacing column j in matrix A by the column vector b. 

For example, consider the system of two linear algebraic equations: 

 

 

2222121

1212111

bxaxa

bxaxa

=+

=+
 

 
Applying Cramer's rule yields 

 

2221

1211

221

111

1

2221

1211

222

121

1

aa

aa

ba

ba

xand

aa

aa

ab

ab

x ==  

 

 
The determinants in the last equation can be evaluated by the diagonal method. 

For systems containing more than three equations, the diagonal method does not work. In 

such cases, the method of cofactors could be used. The number of multiplications and divisions 

N required by the method of cofactors is  )!1)(1( +−= nnN . For a relatively small system of 

10 equations (i.e., n=10), N=360,000,000, which is an enormous number of calculations. For 

n=100, N=10
157

, which is obviously ridiculous. The preferred method for evaluating 

determinant is elimination method. The number of multiplications and divisions required by 

the elimination method is approximately nnnN −+= 23 . Thus, for n=10, N=1090, and for 

n=100, N=1,009,900. Obviously, the elimination method is preferred.  
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Example: Cramer's rule. 

 

Let's illustrate Cramer's rule by solving the following system, 

 

201302020

20204020

20202080

321

321

321

=+−−

=−+−

=−−

xxx

xxx

xxx

 

 

Solution: 

 

).det(),det(),det(

000,300

1302020

204020

202080

)det(

321 AandAAcalculateNext

A =

−−

−−

−−

=

 

40.0
000,300

000,120

)det(

)det(
00.1

000,300

000,300

)det(

)det(
60.0

000,300

000,180

)det(

)det(

000,120

202020

204020

202080

)det(

000,300

1302020

202020

202080

)det(

000,180

1302020

204020

202020

)det(

3

3

2

2

1

1

3

2

1

=========

=

−−

−

−

=

=

−

−−

−

=

=

−

−

−−

=

A

A
x

A

A
x

A

A
x

A

A

A
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Gauss Elimination 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

The elimination procedure described in the previous section, including scaled pivoting, is 

commonly called Gauss elimination. It is the most important and most useful direct 

elimination method for solving systems of linear algebraic equations. The Gauss-Jordan 

method, the matrix inverse method, the LU factorization method, and the Thomas algorithm 

are all modifications or extensions of Gauss elimination method. Pivoting is an essential 

element of Gauss elimination. 

 

 

Elimination 
 
Let's illustrate the elimination method by solving the following system of equations: 

 

)3(.....................................201302020

)2(.......................................20204020

)1(......................................20202080

321

321

321

=+−−

=−+−

=−−

xxx

xxx

xxx

 

 
Solve Eq. (1) for x1. Thus, 

 
 

)4(......................................
80

)20()20(20 32
1

xx
x

−−−−
=  

 
Substituting Eq. (4) into Eq. (2) gives 

 

 
)5(............202040

80

)20()20(20
20 32

32





=−+


−−−−

− xx
xx

 

 

Elimination methods solve a system of linear algebraic 

equations by solving one equation; say the first 

equation, for one of the unknowns, say x1, in terms of 

the remaining unknowns, x2 to xn, then substituting the 

expression for x1 into the remaining n-1 equations to 

determine n-1 equations involving x2 to xn. This 

eliminations procedure is performed n-1 times until the 

last step yields an equation involving only xn. This 

process is called elimination. 

The value of xn can be calculated from the final 

equation in the elimination procedure. Then xn-1 can be 

calculated from modified equation n-1, which contains 

only xn and xn-1. then xn-2 can be calculated from 

modified equation n-2, which contains only xn, xn-1, and 

xn-2. This procedure is performed n-1 times to calculate 

xn-1 to x1. This process is called back substitution. Johann Carl Friedrich Gauss 

1777 - 1855 
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which can be simplified to give 

 
)6(....................................................................252535 32 =− xx  

 
Substituting Eq. (4) into Eq. (3) gives 

 

 
)7(...........2013020

80

)20()20(20
20 32

32





=+−


−−−−

− xx
xx

 

 
which can be simplified to give 

 

)8(................................................................2512525 32 =+− xx
 

 

Next solve Eq. (6) for x2. Thus, 

 

 
)9(.................................................................

35

)25(25 3
2

x
x

−−
=

 
 

Substituting Eq. (9) into Eq. (8) yields 

 

 
)10(........................................25125

35

)25(25
25 3

3





=+


−−

− x
x

 
 

which can be simplified to give 

 

)11(...........................................................................
7

300

7

750
3 =x  

 
Thus, Eq's. (1,2, and 3) has been reduced to the upper triangular system 

 

)14(.................................................
7

300

7

750

)13(....................................................252535

)12(................................................20202080

3

32

321

=

=−

=−−

x

xx

xxx

 
 

which is equivalent to the original equation. This completes the elimination process. 
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Back substitution 
 
The solution to Eq's. (12, 13, and 14) is accomplished easily by back substitution. Starting 

with equation (14) and working backward yields 

 

 

 
60.0

80

)40.0()20()00.1()20(20

00.1
35

)40.0()25(25

40.0
750

300

1

2

3

=
−−−−

=

=
−−

=

==

x

x

x

 

 

Simple Elimination 
The elimination procedure illustrated previously involves manipulation of the coefficient 

matrix A and the nonhomogeneous vector b. components of the x vector are fixed in their 

locations in the set of equations. As long as the columns are not interchanged, column j 

corresponds to xj. Consequently, the xj notation does not need to be carried throughout the 

operations. Only the numerical elements of A and b need to be considered. Thus, the 

elimination procedure can be simplified by augmenting the A matrix with the b vector and 

performing the row operations on the elements of the augmented A matrix to accomplish the 

elimination process, then performing the back substitution process to determine the solution 

vector. This simplified elimination procedure is illustrated in the following example. 

 

  
Example: Solve the previous example using simple elimination? 

 

Solution: The A matrix augmented by the b vector is 

 

 
















−−

−−

−−

=

20|1302020

20|204020

20|202080

| bA

 
 

Performing the row operation to accomplish the elimination process yields: 

 

13

12

)80/20(

)80/20(

20|1302020

20|204020

20|202080

RR

RR

−−

−−

















−−

−−

−−

 

 

 

23 )35/25(25|125250

25|25350

20|202080

RR −−















−

−

−−
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 

 

40.0
750

300

00.1
35

)40.0()25(25

60.0
80

)40.0()20()00.1()20(20

7

300
|

7

750
00

25|25350

20|202080

3

2

1

==

=
−−

=

=
−−−−

=























−

−−

x

x

x

  

 

 

 

 

 

 

 

 

Pivoting 
The element on the major diagonal is called the pivot element. The elimination procedure 

described so far fails immediately if the first pivot element a11 is zero. The procedure also fails 

if any subsequent pivot element ai,j is zero. Even though there may be no zeros on the major 

diagonal in the original matrix, the elimination process may create zeros on the major 

diagonal. The simple elimination procedure described so far must be modified to avoid zeros 

on the major diagonal. This result can be accomplished by rearranging the equations, by 

interchanging equations (rows) or variables (columns), before each elimination step to put 

the element of largest magnitude on the diagonal. This process is called pivoting. 

Interchanging both rows and columns called full pivoting. Full pivoting is quite complicated, 

and thus it is rarely used. Interchanging only rows is called partial pivoting. 

Pivoting eliminates zeros in the pivot element locations during the elimination process. 

Pivoting also reduces round-off errors, since the pivot element is a divisor during the 

elimination process, and division by large numbers introduces smaller round-off errors than 

division by small numbers. When the procedure is repeated, round-off errors can compound. 

This problem becomes more severe as the number of equations is increased. 

 

 
Example: Elimination with pivoting to avoid zero pivot elements? 

 

Solution: Using simple elimination with partial pivoting to solve the following system of linear 

algebraic equations, Ax = b : 

 

















−=

































−−

−

5

3

5

332

114

120

3

2

1

x

x

x

 

 
Let’s apply the elimination procedure by augmenting A with b. The first pivot element is zero, 

so pivoting is required. The largest number (in magnitude) in the first column under the pivot 

element occurs in the second row. Thus, interchanging the first and second rows and 

evaluating the elimination multipliers yields 

Gauss in 1803 
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13

12

)4/2(

)4/0(

5|332

5|120

3|114

RR

RR

−−

−

















−−

−−

 

 
Performing the elimination operations yields  

 





















−

−−

2

7
|

2

7

2

7
0

5|120

3|114

 

 
Although the pivot element in the second row is not zero, it is not the largest element in the 

second column underneath the pivot element. Thus, pivoting is called for again. Note that 

pivoting is based only on the rows below the pivot element. The rows above the pivot element 

have already been through the elimination process. Using one of the rows above element 

would destroy the elimination already accomplished. Interchanging the second and third rows 

and evaluating the elimination multiplier yields 

 

23 )7/4(5|120
2

7
|

2

7

2

7
0

3|114

RR −















−

−−

 

 
Performing the elimination operation yields 

 

1

2

1

3|300
2

7
|

2

7

2

7
0

3|114

3

2

1

=

=

−=



















−

−−

x

x

x

 

 

 

Scaling 
The elimination process described so far can incur significant round-off errors when the 

magnitudes of the pivot elements are smaller than the magnitudes of the other elements in the 

equations containing the pivot elements. In such cases, scaling is employed to select the pivot 

elements. After pivoting, elimination is applied to the original equations. Scaling is employed 

only to select the pivot elements. 
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Example: Elimination with scaled pivoting to reduce round-off errors? 

 

Solution: Let's investigate the advantage of scaling by solving the following linear system: 

 

















=

































−

3

98

104

311

10332

10523

3

2

1

x

x

x

 

  

Which has the exact solution 0.1,0.1,0.1 321 ==−= xandxx . To accentuate the effects of 

round-off, carry only three significant figures in the calculations. For the first column, 

pivoting does not appear to be required. Thus, the augmented A matrix and the first set of row 

operations are given by 

 

13

12

)333.0(

)667.0(

3|311

98|10332

104|10523

RR

RR

−

−

















−  

 
which gives  

 

23 )0771.0(6.31|0.32334.00

6.28|0.3333.40

104|10523

RR −−















−−

−  

 

 
Pivoting is not required for the second column. Performing the elimination indicated yields 

the triangularized matrix 

 

997.0

924.0

844.0

4.29|5.2900

6.28|0.3333.40

104|10523

3

2

1

=

=

−=



















−−

−

x

x

x

   

 
which does not agree very well with the exact solution  

 

0.1

0.1

0.1

3

2

1

=

=

−=

x

x

x

 

 
Round-off errors due to the three-digit precision have polluted the solution. 

 

The effect of round-off can be reduced by scaling of equations before pivoting. Since scaling 

itself introduces round-off, it should be used only to determine if pivoting is required. All 

calculation should be made with the original unscaled equations. 
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Let's rework the problem using scaling to determine if pivoting is required. The first step in 

the elimination procedure eliminates all the elements in the first column under element a11. 

Before performing that step, let's scale all the elements in column 1 by the largest element in 

each row. The result is 

 

















=

















=

3333.0

0194.0

0286.0

3/1

103/2

105/3

1a    

 
Where the notation a1 denotes the column vector consisting of the scaled elements from the 

first column of matrix A. The third element of a1 is the largest element in a1, which indicates 

that rows 1 and 3 of matrix A should be interchanged. Thus, the previous equation with the 

elimination multipliers indicated, becomes 

 

13

12

)1/3(

)1/2(

104|10523

98|10332

3|311

RR

RR

−

−



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










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Performing the elimination and indicating the next elimination multiplier yields 

 

23 )5/1(95|9610
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3|311

RR −












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−
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Scaling the second and third elements of column 2 gives 

 

















−

−

−

=

















−

−

−

=

0104.0

0516.0

96/1

97/52a  

 
Consequently, pivoting is not indicated. Performing the elimination indicated yields 

 

















−

6.76|6.760.00.0

0.92|0.970.50.0

0.3|0.30.10.1

 

 
And performing back substitution yields  0.1,0.1,0.1 321 ==−= xandxx , which is the exact 

solution. 
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Programming 
 
The Gauss elimination procedure, in a format suitable for programming on a computer, is 

summarized as follows: 

 

1. Define the n×n coefficient matrix A, the n×1 column vector b, and the n×1 order vector 

o. 

2. Starting with column 1, scale column k (k = 1,2,…..,n-1) and search for the element of 

largest magnitude in column k and pivot (interchange rows) to put the coefficient into 

the ak,k pivot position. This step is accomplished by interchanging the corresponding 

elements of the n×1 order vector o. 

3. For column k (k = 1,2,…..,n-1), apply the elimination procedure to rows   i (i = k+1, 

k+2,……, n) to create zeros in column k below the pivot element, ak,k . Do not actually 

calculate the zeros in column k. In fact, storing the elimination multipliers, em = (ai,k / 

ak,k ), in place of the eliminated elements, ai,k , crates the Doolittle LU factorization that 

will be presented later. Thus,  
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jiji
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












−=

++=













−=

 

 
4. After step 3 is applied to all k columns, (k = 1, 2, ……, n-1), the original A matrix is 

upper triangular. 

 

5. 4. Solve for x using back substitution. If more than one b vector is present, solve for the 

corresponding x vectors one at a time. Thus, 

  

)1......,,2,1(
,

1

,

,

−−=

−

=

=


+=

nni
a

xab
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a

b
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Gauss-Jordan Elimination 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Example: Gauss-Jordan elimination? 

 

Solution: Let's rework the previous example using simple Gauss-Jordan elimination, that is, 

elimination without pivoting. The augmented A matrix is 

 

80/

20|1302020

20|204020

20|202080 1R










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
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−−

−−

−−

  

 
Scaling row 1 to give a11 = 1 gives  
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)20(

)20(

20|1302020

20|204020

4/1|4/14/11

RR
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−−
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
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Applying elimination below row 1 yields 

 

35/

25|125250

25|25350

4/1|4/14/11

2R



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




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



−

−

−−

 

 
Scaling row 2 to give a22 = 1 gives  

 

Gauss-Jordan elimination is a variation of Gauss 

elimination in which the elements above the major 

diagonal are eliminated (made zero) as well as the 

elements below the major diagonal. The A matrix 

is transformed to a diagonal matrix. The rows are 

usually scaled to yield unity diagonal elements, 

which transforms the A matrix to the identity 

matrix, I. The transformed b vector is then the 

solution vector x. 

The numbers of multiplications and divisions 

for Gauss-Jordan elimination is approximately 
23 )2/2/( nnnN +−= , which is approximately 

50 percent larger than of Gauss elimination. 

Consequently, Gauss elimination is preferred. 

Marie Ennemond Camille Jordan 

1838 - 1922 
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23
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Applying elimination both above and below row 2 yields 

 

)7/750(/7/300|7/75000
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3R
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Scaling row 3 to give a33 = 1 gives  
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Applying elimination above row 3 completes the process. 

 

















40.0|100

00.1|010

60.0|001

 

 
The matrix A has been transformed to the identity matrix I and the b vector has been 

transformed to the solution vector, x. Thus,  40.000.160.0=Tx . 
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The inverse of a square matrix A is the matrix A
-1
 such that A.A

-1
 = A

-1
. A = I. Gauss-Jordan 

elimination can be used to evaluate the inverse of matrix A by augmenting A with the identity 

matrix I and applying the Gauss-Jordan algorithm. The transformed A matrix is the identity 

matrix I, and the transformed identity matrix is the matrix inverse, A
-1
. Thus, applying         

Gauss-Jordan elimination yields 

 

   1|| −→ AIIA   

 

 
Example: Matrix inverse by Gauss-Jordan elimination? 

 

Solution: Let's evaluate the inverse of matrix A presented in the last example. First, augment 

matrix A with the identity matrix, I. Thus, 

 

 



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

−−
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01|202080

| IA  

 
Performing Gauss-Jordan elimination transforms the matrix to 
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from which 
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The Matrix Inverse Method 
 
Systems of linear algebraic equations can be solved using the matrix inverse, A

-1
. Consider 

the general system of linear algebraic equations: 

 
)1(.........................................bxA =   

 
Multiplying Eq. (1) by A

-1
 yields 

 

bAxxIxAA 11 −− ===  

 
From which 

 

 

 

 

 
Example:  The matrix inverse method? 

 
Solution: Let's solve the linear system considered in the previous example using the matrix 

inverse method. 
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Thus,  40.000.160.0=Tx  

 

 

 

 

 

 
 

 

bAx 1−=  



Numerical Analysis                                                      Unit-3: Simultaneous Linear algebraic Equations 
___________________________________________________________________________  

Page 32 of 43 
 

2. Iterative Methods 
 
For many large systems of linear algebraic equations, Ax = b, the coefficient matrix A is 

extremely sparse. That is, most of the elements of A are zero. If the matrix is diagonally 

dominant,  

 

),........,1(
1

,, niaa
n

ijj

jiii = 
=

 , with > true for at least one row. 

 

it is generally more efficient to solve such systems of linear algebraic equations by iterative 

methods than by direct elimination methods. 

 

Iterative methods begin by assuming an initial solution vector x
(0)

. The initial solution vector 

is used to generate an improved solution vector x
(1)

 based on some strategy for reducing the 

difference between x
(0)

 and the actual solution vector x. This procedure is repeated (i.e., 

iterated) to convergence. The procedure is convergent if each iteration produces 

approximations to the solution vector that approach the exact solution vector as the number 

of iterations increases. 

 

The number of iterations required to achieve convergence depends on: 

 

1. The dominance of the diagonal coefficients. As the diagonal dominance increases, 

the number of iterations required to satisfy the convergence criterion decreases. 

2. The method of iteration used. 

3. The initial solution vector. 

4. The convergence criterion specified. 

 

  

The Jacobi Iteration Method 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carl Gustav Jacob Jacobi 

1804 - 1851 

Consider the general system of linear algebraic 

equations, Ax=b, written in index notation: 

 

)1(...................)...,,.........2,1(
1

, nibxa
n

j

ijji ==
=

 

 

In Jacobi iteration, each equation of the system 

is solved for the component of the solution vector 

associated with the diagonal element, that is, xi. 

Thus, 
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An initial solution vector x

(0)
 is chosen. The superscript in parentheses denotes the iteration 

number, with zero denoting the initial solution vector. The initial solution vector x
(0)

 is 

substituted into Eq. (2) to yield the first improve solution vector x
(1)

. Thus, 
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This procedure is repeated (i.e., iterated) until some convergence criterion is satisfied. The 

Jacobi algorithm for the general iteration step (k) is: 
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An equivalent, but more convenient, form of Eq. (4) can be obtained by adding and subtracting 

xi
(k)

 from the right-hand side of Eq. (4) to yield 
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Eq. (5) is generally written in the form 
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where the term Ri

(k)
 is called the residual of equation i. The residuals Ri

(k)
 are simply the net 

values of the equations evaluated for the approximate solution vector x
(k)

. 

The Jacobi method is sometimes called the method of simultaneous iteration because all 

values of xi are iterated simultaneously. That is, all values of xi
(k+1)

 depends only on the values 

of xi
(k)

. The order of processing the equation is immaterial. 
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Example: The Jacobi Iteration Method. 

 

Solution: To illustrate the Jacobi iteration method, let's solve the following system of linear 

algebraic equations: 

 





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which can be expanded to become 

 

1004
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5321
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These equations can be rearranged, using Eq. (6.b), to yield expressions for the residuals, 

Ri. Thus, 

 

5425

54314
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      …………………………………..   (7)                                                 
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To initiate the solution let   0.00.00.00.00.0)0( =Tx . Substituting these values into Eq. 

(7) gives )5,.......,1(0.100
)0(

== iRi . Substituting these values into Eq. (6.a) gives 

0.25
)1(

5

)1(

4

)1(

3

)1(

2

)1(

1 ===== xxxxx . The procedure is then repeated with these values to 

obtain x
(2)

, etc.   

The first and subsequent iterations are summarized in the above table. Due to the symmetry 

of the coefficient matrix A and the symmetry of the b vector, x1=x5 and x2=x4. The calculations 

were carried out on a 13-digit precision computer and iterated until all ix  changed by less 

than 0.000001 between iterations, which required 18 iterations. 

 

Accuracy 
 
The accuracy of any approximate method is measured in terms of the error of the method. 

There are two ways to specify error: absolute error and relative error: 

 

Absolute error = approximate value – exact value. 

 

Relative error = absolute error/exact value. 

 
 
 
The Gauss-Seidel Iteration Method 
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In the Jacobi method, all values of x
(k+1)

 are based on 

x
(k)

. The Gauss-Seidel method is similar to the Jacobi 

method, except that for most recently computed 

values of all xi are used in all computations. In brief, 

as better values of xi are obtained, use them 

immediately. Like the Jacobi method, the Gauss-

Seidel method requires diagonal dominance to ensure 

convergence. The Gauss-Seidel algorithm is obtained 

from Jacobi algorithm, Eq. (4), by using xj
(k+1)

 values 

in the summation from j=1 to i-1 (assuming the 

sweeps through the equations proceed from i=1 to n). 

Thus,   

Philipp Ludwig von Seidel 

1821 - 1896 
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Illustration for 3×3 system of linear algebraic equations: 

 

)1(

2

33

31)1(

1

33

31

33

3)1(

3

)(

3

22

31)1(

1

22

21

22

2)1(

2

)(

3

11

13)(

2

11

12

11

1)1(

1

3333232131

2323222121

1313212111

+++

++

+

−−=

−−=

−−=

=++

=++

=++

kkk

kkk

kkk

x
a

a
x

a

a

a

b
x

x
a

a
x

a

a

a

b
x

x
a

a
x

a

a

a

b
x

bxaxaxa

bxaxaxa

bxaxaxa

 

 

 
Equation (8) can be written in terms of the residuals Ri by adding and subtracting xi

(k)
 from 

the right-hand side of the equation and rearranging to yield 

 

 

 

 

 

 

 

 

 

 
The Gauss-Seidel method is sometimes called the method of successive iteration because the 

most recent values of all xi are used in all the calculations. Gauss-Seidel iteration generally 

converges faster than Jacobi iteration. 
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Example: The Gauss-Seidel Iteration Method. 

 

Solution: let's rework the problem presented in the last example using Gauss-Seidel iteration. 

The residuals are given by Eq. (9.b). Substituting the initial solution vector, 

 0.00.00.00.00.0)0( =Tx , into Eq. (9.b.1) gives R1
(0)

=100.0. Substituting that result 

into Eq. (9.a.1) gives x1
(1)

=25.0. Substituting  0.00.00.00.00.25=Tx  into Eq. (9.b.2) 

gives 

 

0.125)0.250.100(
)0(

2 =+=R  

 
Substituting this result into Eq. (9.a.2) yields 

 

25.31
4

0.125
0.0

)1(

2 =+=x  

 
Continuing in this manner yields R3

(0)
=131.25, x3

(1)
=32.81250, R4

(0)
=107.81250, 

x4
(1)

=26.953125, R5
(0)

=95.703125, x5
(1)

=23.925781. 

 

The first and subsequent iterations are summarized in the following table. The intermediate 

iterates are no longer symmetrical as they were in the last example. The calculations were 

carried out on a 13-digit precision computer and iterated until all  ix  changed by less than 

0.000001 between iterations, which required 15 iterations, which is three less than required 

by the Jacobi method in the last example.  
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The Successive-Over-Relaxation (SOR) Method 
 

Iterative methods are frequently referred to as relaxation methods, since the iterative 

procedure can be viewed as relaxing x
(0)

 to the exact value x. Historically, the method of 

relaxation, or just the term relaxation, refers to a specific procedure attributed to Southwell 

(1940). 

Southwell observed that in many cases the change in xi from iteration to iteration were 

always in the same directions. Consequently, over-correcting    (i.e. over-relaxing) the values 

of xi by the right amount accelerates convergence. This procedure is illustrated in the Figure 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The Gauss-Seidel method can be modified to include over-relaxation simply by multiplying 

the residual Ri
(k)

 in Eq. (9.a), by the over-relaxation factor, ω. Thus, the successive-over-

relaxation method is given by 

 

 

 

When ω=1.0, Eq. (10.a) yields the Gauss-Seidel method. When 0.20.1  , the system 

of equations is over-relaxed. Over-relaxation is appropriate for systems of linear algebraic 

equations. when 0.1 , the system of equations is under-relaxed. Under-relaxation is 

appropriate when the Gauss-Seidel algorithm causes the solution vector to overshoot and 

move farther away from the exact solution. This behavior is generally associated with the 

iterative solution of systems of nonlinear algebraic equations. The iterative method diverges 
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if 0.2 . The relaxation factor does not change the final solution since it multiplies the 

residual Ri, which is zero when the final solution is reached.    

The optimum value of the over-relaxation factor ωopt depends on the size of the system of 

equations (i.e., the number of equations) and the nature of equations (i.e. the strength of the 

diagonal dominance, the structure of the coefficient matrix, etc.). As a general rule, larger 

values of ωopt are associated with larger systems of equations. 

 

 
Example: The SOR Method. 

 
Solution: To illustrate the SOR method, let's rework the problem presented in the previous 

example using ω=1.1. The residuals are given by Eq. (10.b). Substituting the initial value 

vector,  0.00.00.00.00.0)0( =Tx , into Eq. (10.b.1) gives R1
(0)

=100.0. Substituting that 

value into Eq. (10.a.1) with ω=1.1 gives 

 

500000.27
4

0.100
10.10.0

)1(

1 =+=x  

 

Substituting  0.00.00.00.05.27=Tx  into Eq. (10.b.2) gives 

 

5.127)5.270.100(
)0(

2 =+=R  

 
Substituting this result into Eq. (10.a.2) yields 
 

062500.35
4

5.127
10.10.0

)1(

2 =+=x  

 

Continuing in this manner yield the results presented in the next table. 
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The first and subsequent iterations are summarized in the following table. The calculations 

were carried out on a 13-digit precision computer and iterated until all  ix  changed by less 

than 0.000001 between iterations, which required 13 iterations, which is 5 less than required 

by the Jacobi method and 2 less than required by the Gauss-Seidel method in the last two 

examples, respectively. Its value becomes more significant as the numbers of equations 

increases. 

 

 

 
    

 

 

 

 

 

 

 

 

 

 

The optimum value of ω can be determined by experimentation. If a problem is to be worked 

only once, that procedure is not worthwhile. However, if a problem is to be worked any times 

with the same A matrix for many different b vectors, then a search for ωopt  may be worthwhile. 

The following table presents the result of such a search for the problem considered in the last 

example. For this problem, 14.105.1   yields the most efficient solution. Much more 

dramatic results are obtained for large systems of equations. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of iterations as a function of ω 
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MATLAB APPLICATIONS 
 

Simple Gauss 
 

function [x,det] = gauss(A,b) 

A =[1 3 4; 5 4 7; 0 2 3]; 

b=[1 2 4]'; 

% Solves A*x = b by Gauss elimination and computes det(A). 

% USAGE: [x,det] = gauss(A,b) 

if size(b,2) > 1; b = b'; end % b must be column vector 

n = length(b); 

for k = 1:n-1 % Elimination phase 

for i= k+1:n 

if A(i,k) ~= 0 

lambda = A(i,k)/A(k,k); 

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n); 

b(i)= b(i) - lambda*b(k); 

end 

end 

end 

for k = n:-1:1 % Back substitution phase 

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k); 

end 

if nargout == 2; det = prod(diag(A)); end 

for k = n:-1:1 % Back substitution phase 

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k); 

end 

x = b; 

 

 

 

Gauss with Partial Pivoting 
 

function x = gausspiv(A,B) 

%The sizes of matrices A,B are supposed to be NA x NA and NA x NB. 

%This function solves Ax = B by Gauss elimination algorithm with 

pivoting. 

clear; clc 

A=[10 2 0 1; 5 1 3 1; 6 -3 0 1; 5 1 -1 -5]; 

B=[1 -2 -10 0]'; 

NA = size(A,2); [NB1,NB] = size(B); 

if NB1 ~= NA, error('A and B must have compatible dimensions'); 

end 

N = NA + NB; AB = [A(1:NA,1:NA) B(1:NA,1:NB)] % Augmented matrix 

epss = eps*ones(NA,1); 

for k = 1:NA 

%Scaled Partial Pivoting at AB(k,k) by Eq.(2.2.20) 

[akx,kx] = max(abs(AB(k:NA,k))./ ... 

max(abs([AB(k:NA,k + 1:NA) epss(1:NA - k + 1)]'))'); 

if akx < eps, error('Singular matrix and No unique solution'); end 

mx = k + kx - 1; 
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if kx > 1 % Row change if necessary 

tmp_row = AB(k,k:N); 

AB(k,k:N) = AB(mx,k:N); 

AB(mx,k:N) = tmp_row; 

end 

AB 

% Gauss forward elimination 

AB(k,k + 1:N) = AB(k,k+1:N)/AB(k,k); 

AB(k,k) = 1; %make each diagonal element one 

for m = k + 1: NA 

AB(m,k+1:N) = AB(m,k+1:N) - AB(m,k)*AB(k,k+1:N); %Eq.(2.2.5) 

AB(m,k) = 0; 

end 

AB 

end 

%backward substitution for a upper-triangular matrix eqation 

% having all the diagonal elements equal to one 

x(NA,:) = AB(NA,NA+1:N); 

for m = NA-1: -1:1 

x(m,:) = AB(m,NA + 1:N)-AB(m,m + 1:NA)*x(m + 1:NA,:); %Eq.(2.2.7) 

end 

 

 

 

Gauss-Seidel 
 

function X = gauseid(A,B,X0,kmax) 

%This function finds x = A^-1 B by Gauss–Seidel iteration. 

A=[0 2 0 1; 2 2 3 2; 4 -3 0 1; 6 1 -6 -5]; 

B=[0 -2 -7 6]'; 

%X0=[1 1 1 1]; 

%kmax=1000; 

if nargin < 4, tol = 1e-6; kmax = 100; 

elseif kmax < 1, tol = max(kmax,1e-16); kmax = 1000; 

else tol = 1e-6; 

end; if nargin < 4, tol = 1e-6; kmax = 100; end 

if nargin < 3, X0 = zeros(size(B)); end 

NA = size(A,1); X = X0; 

for k = 1: kmax 

X(1,:) = (B(1,:)-A(1,2:NA)*X(2:NA,:))/A(1,1); 

for m = 2:NA-1 

tmp = B(m,:)-A(m,1:m-1)*X(1:m - 1,:)-A(m,m + 1:NA)*X(m + 1:NA,:); 

X(m,:) = tmp/A(m,m); %Eq.(2.5.4) 

end 

X(NA,:) = (B(NA,:)-A(NA,1:NA - 1)*X(1:NA - 1,:))/A(NA,NA); 

if nargout == 0, X, end %To see the intermediate results 

if norm(X - X0)/(norm(X0) + eps)<tol, break; end 

X0 = X 

end 
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% Gauss-Seidel Method in MATLAB 

  

function x = gauss_siedel( A ,B ) 

disp ( 'Enter the system of linear equations in the form of AX=B') 

  

%Inputting matrix A 

  

A = input ( 'Enter matrix A :   \n') 

% check if the entered matrix is a square matrix 

  

[na , ma ] = size (A); 

if na ~= ma 

    disp('ERROR: Matrix A must be a square matrix') 

    return 

end 

  

% Inputting matrix B 

  

B = input ( 'Enter matrix B :   ') 

% check if B is a column matrix 

  

[nb , mb ] = size (B); 

if nb ~= na || mb~=1 

   disp( 'ERROR: Matrix B must be a column matrix') 

   return 

end 

  

% Separation of matrix A into lower triangular and upper 

triangular matrices 
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Unit-4: Numerical Differentiation and Integration 
 

 

Numerical Differentiation 
 
The evaluation of the derivatives is required in many problems in engineering and science: 

 

)()('))(( xfxfxf
dx

d
x==    

 
The function f(x), which is to be differentiated, may be a known function or a set of discrete 

data. In general, known functions can be differentiated exactly. Differentiation of discrete 

data, however, requires an approximate numerical procedure. 

Numerical differentiation formulas can be developed by fitting approximating functions (e.g., 

polynomials) to a set of discrete data and differentiating the approximating function. Thus, 

  

)())(( xfxf
dx

d
x  

 
As illustrated in the figure below, even though the approximating polynomial Pn(x) passes 

through the discrete data points exactly, the derivatives of the polynomial P'n(x) may not be a 

very accurate approximation of the derivative of the exact function f(x) even at the known data 

points themselves. In general, numerical differentiation is an inherently inaccurate process. 
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which has the exact derivatives  
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Can be considered to illustrate numerical differentiation procedures. In particular, at x = 3.5: 
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Direct Fit Polynomials 
 

One of the most classical procedures of numerical differentiation is the direct fit polynomials, 

which can be used both for equally and unequally spaced sets of data. A direct fit polynomial 

procedure is based on fitting the data directly by a polynomial and differentiating the 

polynomial.  

 
n

non xaxaxaaxP ++++ .....)( 2

21  

 
Where Pn(x) is determined by one of the following methods: 

 
1. Given N = n+1 points, [xi , f(xi)], determine the exact nth-degree polynomial that 

passes through the data points, as will be discussed in unit 5. 
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2. Given N > n+1 points, [xi , f(xi)], determine the least squares nth-degree polynomial 

that best fits the data points, as will be discussed in unit 5. 

 

After approximating polynomial has been fit, the derivatives are determined by differentiating 

the approximating polynomial. Thus, 

 

...62)('')(''
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Example: Direct Fit Polynomials 

 
Solution: Consider the following three data points: 

 

x f(x) 

3.4 0.294118 

3.5 0.285714 

3.6 0.277778 

 

 

First, fit the quadratic polynomial 
2

212 )( xaxaaxP o ++= , to the three data points: 
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Solving for ao, a1, and a2 by Gauss elimination gives 

 

ao = 0.858314,     a1 = - 0.245500,     a2 = 0.023400 

 

046800.0)(''

04680.0245500.0)('
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Substituting x = 3.5 yields 

 

081700.0)5.3(04680.0245500.0)5.3('2 −=+−=P  
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Taylor Series Approach 
 

This approach is especially useful for deriving finite difference approximations if exact 

derivatives (both total derivatives and partial derivatives) that appear in differential 

equations. 

Difference formulas for function of a single variable, f(x), can be developed from the Taylor 

series for a function of a single variable, Eq. (0.6): 
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oooo xf
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xfxffxf  

where )(,)( 0

// xffxff ooo == , etc. The continuous spatial domain D(x) must be 

discretized into an equally spaced grid of discrete points, as illustrated in the figure below. 

For the discretized x space, 

 

ii fxf =)(    

 

where the subscript i denotes a particular spatial location. The Taylor series for f(x) at grid 

points surrounding point i can be combined to obtain difference formulas for f'(xi), and f''(xi), 

etc. 

 

 

 

 

 

 

 

The Taylor series for the function f(x) can be rewritten as  
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The Taylor formula with the remainder is given by Eq. (0.10): 
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where the remainder term 
1+nR  is given by 
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Consider the equally spaced discrete finite difference grid illustrated in the above figure. 

Choose point i as the base point, and write the Taylor series for fi+1 and fi-1 : 
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Subtracting fi-1  from fi+1  gives 
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Letting the fxxx be the remainder term and solving for ixf  yields 
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where 11 +−  ii xx   

The last equation is an exact expression for ixf . If the remainder term is truncated it will 

yield an )(0 2x finite difference approximation of ixf . Thus, 

 

 

 

 

 

 

Adding  fi-1  to  fi+1  gives 
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Letting the fxxxx term be the remainder term and solving for ixxf  yields 
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where 11 +−  ii xx   

 

Truncating the remainder term yields a finite difference approximation for ixxf . Thus, 
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These difference equations are centered-difference formulas. They are inherently more 

accurate than one-sided formulas. 

 

Example: Taylor series difference formulas. 

 

Solution: Consider the following three data points: 

 

x f(x) 

3.4 0.294118 

3.5 0.285714 

3.6 0.277778 
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These are the same results that are obtained previously from the direct fit polynomial method  
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Error Estimation and Extrapolation 
When the functional form of an error of a numerical algorithm is known, the error can be 

estimated by evaluating the algorithm for two different increment sizes. The error estimate 

can be used both for error control and extrapolation. 

Consider a numerical algorithm which approximates an exact calculation with an error that 

depends on an increment, h. Thus, 

 

)1(..............................)( 2 ++++= ++ mnmnn

exact hChBhAhff  

 
where n is the order of the leading error term and m is the increment in the order of the 

following error terms. Applying the algorithm at two increment sizes,       h1 = h and h2 = h/R, 

gives  
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Subtracting Eq. (2.b) from Eq. (2.a) gives 
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Solving Eq. (3) for the leading error terms in Eqs. (2.a) and (2.b) yields 

 

 

 

 

 

 

 

Equation (4) can be used to estimate the leading error term in Eq. (2). 

The error estimate can be added to the approximate results to yield an improved 

approximation. This process is called extrapolation. Adding Eq. (4.b) to Eq. (2.b) gives 

 

 

The error of the extrapolated value is )(0 mnh +
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result, where the exponent, n, in Eq. (5) is replaced with 

n+m. Higher-order extrapolations can be obtained by successive applications of Eq. (5) 
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Example: Error estimation and extrapolation. 

 

Solution: Consider the following five data points: 

    

x f(x) 

3.3 0.303030 

3.4 0.294118 

3.5 0.285714 

 3.6 0.277778 

3.7 0.270270 

 

In the last example we evaluated f'(3.5) with 1.0=x . A more accurate result could be 

obtained by f'(3.5) with 05.0=x , which requires data at x = 3.45    and 3.55. While these 

points are not available, data are available at x = 3.3     and 3.7, for which 2.0=x . 

Evaluating f'(3.5) using 2.0=x gives 

 

081900.0
)2.0(2

303030.0270270.0

)2.0(2

)3.3()7.3(
)5.3(/ −=

−
=

−
=

ff
f  

 

The exact error in this result is 000267.0)081633.0(081900.0 −=−−−=Error  , which is 

approximately four times larger than the exact error obtained in the last example where 

f'(3.5)=-0.081700, for which the exact error is 000067.0)081633.0(081700.0 −=−−−=Error

. 

Now that two estimates of f'(3.5) are available, the error estimate for the result with the 

smaller x can be calculated from Eq. (4.b). Thus, 

 

000067.0)]081900.0(08177.0[
12

1
)2/(

))()/((
1

1
)/(

2
=−−−

−
=

−
−

=

xError

hfRhf
R

RhError
n

 

 

Applying the extrapolation formula, Eq. (5), gives 

 

Extrapolated value = )(0))()/((
1

1
)/( mn

n
hhfRhf

R
Rhf ++−

−
+  

 

Extrapolated value = 081633000006700817000 . -  .  .- =+  

 

Which is the exact value to six digits after the decimal place.  
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Finite Difference Formulation 
 
We can drive the same finite difference formulas using the general definition of the derivative, but without 

the ability to recognize the error order to establish the extrapolation process discussed earlier. 

 

The general definition of the derivative can be illustrated as follows: 
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 Forward differentiation 
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=  Backward differentiation 
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All the finite difference formula can be represented in stencil representation. Thus, 
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Numerical Integration 
 
The evaluation of integrals, a process known as integration or quadrature, is required in many 

problems in engineering and science. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The function f(x), which is to be integrated, may be a known function or a set of discrete data. 

Some known functions have an exact integral, in which case the above equation f(x) = 1/x can 

be evaluated exactly in closed form: 

 

  ...22957444.0
1.3

9.3
ln)(ln

1

1
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


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
===

=

 xdx
x

I

x
xf

 

 

Many known functions, however, do not have an exact integral, and an approximate numerical 

procedure is required to evaluate f(x). In many cases, the function f(x) is known only at a set 

of discrete points, in which case an approximate numerical procedure is again required to 

evaluate f(x).  

Numerical integration (quadrature) formulas can be developed by fitting approximating 

functions (e.g., polynomials) to discrete data and integrating the approximating function: 

 

=
b

a

dxxfI )(  

f(x)=1/x 
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This process is illustrated in the next figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct Fit Polynomials 
A straightforward numerical integration procedure that can be used for both unequally spaced 

data and equally spaced data is based on fitting the data by a direct fit polynomial and 

integrating that polynomial. Thus, 

 

..........)( 2

21 +++++ n

non xaxaxaaxP  

 

Where Pn(x) is determined by one of the following methods: 

 

1. Given N = n+1 points, [xi , f(xi)], determine the exact nth-degree polynomial that 

passes through the data points, as discussed in chapter 3. 

2. Given N > n+1 points, [xi , f(xi)], determine the least squares nth-degree polynomial 

that best fits the data points, as discussed in chapter 3. 

3. Given a known function f(x) evaluate f(x) at N discrete points and fit a polynomial by 

an exact fit or least squares fit. 

 

After approximating polynomial has been fit, the integral becomes 
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Introducing the limits of integration and evaluation gives the value of the integral. 

 

Example:  Direct fit polynomial 

 

Solution:  Lets solve the example problem presented in the introduction by a direct fit 

polynomial. Recall: 

dxxPdx
x

I n =
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1.3

9.3

1.3
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Consider the following three data points: 

 

x f(x) 

3.1 0.32258065 

3.5 0.28571429 

3.9 0.25641026 

 

Fit the quadratic polynomial, 
2

212 )( xaxaaxP o ++ , to the three data points by the direct 

fit method: 

 

2

21

2

21

2

21

)9.3()9.3(25641026.0

)5.3()5.3(28571429.0

)1.3()1.3(32258065.0

aaa

aaa

aaa

o

o

o

++=

++=

++=

 

 

Solving for ao, a1, and a2 by Gauss elimination gives 
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Newton-Cotes Formulas 
 

The direct fit polynomial procedure requires a significant amount of effort in the evaluation 

of the polynomial coefficients. When the function to be integrated is known at equally spaced 

points, the Newton forward-difference polynomial can be fit to the discrete data with much 

less effort. The resulting formulas are called Newton-Cotes formulas. 

 

Each choice of the degree n of the interpolating polynomial yields a different Newton-Cotes 

formula. The next table the more common formulas. Higher-order formulas have been 

developed, but those presented in the table are sufficient for most problems in engineering 

and science. The rectangle rule has poor accuracy, so it is not considered further. The other 

three rules are developed in this section. 

 

 

 

 

 

 

 

 

 

 

 

The Trapezoid Rule 
 

The trapezoid rule for single interval is obtained by fitting a first-degree polynomial to two 

discrete points, as illustrated in the figure below. 
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The composite trapezoid rule is obtained by applying I over all the intervals of interest. 

Thus, 
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where iii xxh −= +1 . This equation does not require equally spaced data. When the data 

are equally spaced, the equation can be further simplified to: 

 

   

 

 

 

where === hxxi constant. 

 

The Global Error of the Trapezoid rule is 0(h
2
). 

 

 

Example: The Trapezoid rule. 

 

Solution: for the same function 
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f(x)=1/x 
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Solving the problem for the range of integration consisting of only one interval of h=0.8 gives 

 

( ) 23159636.025641026.032258065.0
2

8.0
)8.0( =+==hI  

 

Let's break the total range of integration into two intervals h=0.4 and apply the composite 

rule. Thus, 

 

  23008389.025641026.0)28571429.0(232258065.0
2

4.0
)4.0( =++==hI  

 

 

For four intervals of h=0.2, the composite rule yields 

 

22970206.0]25641026.0

)27027027.028571429.030303030.0(232258065.0[
2

2.0
)2.0(

=+

+++==hI
 

 

 

Finally, for eight intervals of h=0.1, 

 

22960636.0]25641026.0

)26315789.0..........31250000.0(232258065.0[
2

1.0
)1.0(

=+

+++==hI
 

 

Recall that the exact answer is I=0.22967444. 

 

The results are tabulated in the following table, which also presents the errors and the ratios 

of the errors between successive interval halvings, 
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Simpson's 1/3 Rule 
 

Simpson's 1/3 rule is obtained by fitting a second-degree polynomial the three equally spaced 

discrete points, as illustrated in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The composite Simpson's 1/3 rule for equally spaced points is obtained by applying I over 

the entire range of integration. Note that the total number of increments must be even. Thus, 

 

 

 

 

 

 

The Global Error of the Simpson's 1/3 rule is 0(h
4
). 
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Example: Simpson's 1/3 rule. 

 

Solution: for the same function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solving the problem for two increments of h=0.4, the minimum permissible number of 

increments for Simpson's 1/3 rule, and one interval yields 

 

  22957974.025641026.0)28571429.0(432258065.0
3

4.0
)4.0( =++==hI  

 

Breaking the total range of integration into four increments of h=0.2 and two intervals and 

applying the composite rule yields, 

 

22957478.0]25641026.0

)27027027.0(4)28571429.0(2)30303030.0(432258065.0[
3

2.0
)2.0(
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+++==hI
 

 

Finally, for eight increments of h=0.1, and four intervals, 

 

22957446.0]25641026.0)26315789.0(4

)27027027.0(2)27777778.0(4)28751429.0(2

)29411765.0(4)30303030.0(2)31250000.0(432258065.0[
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Recall that the exact answer is I=0.22967444. 

 

The results are tabulated in the following table, which also presents the errors and the ratios 

of the errors between successive increment sizes. 

f(x)=1/x 
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Ratio 162
)2/(0

)(0
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Simpson's 3/8 Rule 
 

Simpson's 3/8 rule is obtained by fitting a third-degree polynomial the four equally spaced 

discrete points, as illustrated in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The composite Simpson's 3/8 rule for equally spaced points is obtained by applying I over 

the entire range of integration. Note that the total number of increments must be a multiple of 

three. Thus, 

 

 

 

 

 

 

The Global Error of the Simpson's 1/3 rule is 0(h
4
). 
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Simpson's 1/3 rule and Simpson's 3/8 have the same order, 0(h
4
). As a matter of fact Simpson's 

1/3 rule is practically more accurate than Simpson's 3/8 rule. In view of this result, what use, 

if any, is Simpson's 3/8 rule? Simpson's 3/8 rule is useful when the total number of increments 

is odd. Three increments can be evaluated by the 3/8 rule, and the remaining even number of 

increments can be evaluated by 1/3 rule.   

 

 

Extrapolation and Romberg Integration (Error calculation) 
 

When extrapolation is applied to numerical integration by the trapezoid rule, the result is 

called Romberg integration.  

 

When the functional form of the error of a numerical algorithm is known, the error can be 

estimated by evaluating the algorithm for two different increment sizes. The error estimate 

can be used both for error control and extrapolation. Recall the error estimation formula, 

written for the process of numerical integration, that is with f(h) = I(h). Thus, 

 

))()/((
1

1
)/( hfRhf

R
RhError

n
−

−
=  

 

Where R is the ratio of the increment sizes and n is the global order of the algorithm. The 

extrapolation formula is given by 

 

)/(Error)/(valueedExtrapolat RhRhf +=   

 

Recall the composite trapezoid rule  

 

)2.....22(
2

1
121 nno fffffhI +++++= −  

 

It can be shown that the error of the composite trapezoid rule has the functional form  

 

......Error 6

3

4

2

2

1 +++= hChChC  

 

Thus, the basic algorithm is 0(h
2
), so n=2. The following error terms increases in order of an 

increments of 2. 

 

Let's apply the trapezoid rule for a succession of smaller and smaller increment sizes, where 

each successive increment size is one-half of the preceding increment size. Thus, 

2)2//( == hhR . Applying the error estimation formula gives 
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For the trapezoid rule itself, n=2, and the last equation becomes 

 

 

 

 

 

 

This equation can be used for error estimation and error control. 

 

Applying the extrapolation formula for R=2 gives 

 

......)(0)2/(Error)2/(valueedExtrapolat 4 +++= hhhf  

 

And this clearly illustrates that the result obtained by extrapolating the 0(h
2
) trapezoid rule is 

0(h
4
). 

 

If two extrapolated 0(h
4
) values are available, which requires three 0(h

2
) trapezoid rule result, 

those two values can be extrapolated to obtain an 0(h
6
) value by applying the Error(h/R) 

equation with n=4 to estimate the 0(h
4
) error, and adding that error to more accurate 0(h

4
) 

values. 

 

Example: Romberg integration. 

 

Solution: Let's apply extrapolation to the results obtained earlier, in which the trapezoid rule 

is used.  

 

Recall that the exact answer is I=0.22967444.    

 

 

Substituting I(h=0.8) and I(h=0.4) yields 
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Repeating the procedure for the h=0.4 and h=0.2 results gives  

 

00012728.0]23008389.022970206.0[
3

1
)2/(

)]()2/([
3

1
)2/(

−=−=

−=

hError

hIhIhError

 

 

22957478.0)00012728.0(22970206.0valueedExtrapolat

)2/(Error)2/(valueedExtrapolat

=−+=

+= hhf
 

 

 

Both extrapolated values are 0(h
4
). Substituting the two 0(h

4
) extrapolated values with n=4, 

gives an Error of 
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These results, and the results of one more application of the trapezoid rule and its associated 

extrapolations, are presented in the next table. 

 

The 0(h
4
) results are identical to the results for the 0(h

4
) Simpson's rule. The second 0(h

6
) 

result agrees with the exact value to eight significant digits. 
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Multiple Integrals 
 

The numerical integration formulas developed in the preceding sections for evaluating single 

integrals can be used to evaluate multiple integrals. Consider the double integral: 

 

=
b
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This equation can be written in the form: 
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where 

 

=
b

a

dxyxfyF ),()( y = constant 

 

The double integral is evaluated in two steps: 

 

1. Evaluate F(y) at selected values of y by any numerical integration formula. 

2. Evaluate = dyyFI )( by any numerical integration formula. 

 

If the limits of integration are variable, as illustrated in the next figure, that must be accounted 

for. 
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Example: Double integral. 

 

Evaluate the double integral 
0.3

5.1

6.0

2.0

),( dydxyxf  where f(x,y) is given by the following table: 

 

y           x 0.1 0.2 0.3 0.4 0.5 0.6 

0.5 0.165 0.428 0.687 0.942 1.190 1.431 

1.0 0.271 0.640 1.003 1.359 1.703 2.035 

1.5 0.447 0.990 1.524 2.045 2.549 3.031 

2.0 0.738 1.568 2.384 3.177 3.943 4.672 

2.5 1.216 2.520 3.800 5.044 6.241 7.379 

3.0 2.005 4.090 6.136 8.122 10.030 11.841 

3.5 3.306 6.679 9.986 13.196 16.277 19.198 

 

 

Use Trapezoidal rule to integrate w.r.t. (x) and Simpson's 1/3 rule to integrate w.r.t. (y): 
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By the same way we get: 

 

7435.92368.86522.6 6.05.04.0 === === yyy III  

 

Now Accumulate these Integrations w.r.t. (y) using Simpson's 1/3 rule: 
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Example:  Double integral. 

 

Solution: to illustrate double integral with variable limits of integration, let's calculate the 

mass of water in a cylindrical container which is rotating at a constant angular velocity ω, 

as illustrated in the figure below, a meridional plane view through the axis of rotation is 

presented also. From a basic fluid mechanics analysis, it can be shown that the shape of the 

free surface is given by 

 

2)( rBArz +=     ……………………………………….………………    (1) 

 

From measured data, z(0)=z1 and z(R)=z2. Substituting these values into Eq. (1) gives 
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+=    ……………………………….………………    (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a specific experiment, R=10.0 cm, z1=10.0 cm, and z2=20.0 cm. In this case Eq. (2) gives 

 

21.010)( rrz +=              ……………………………….………………    (3) 

 

Let's calculate the mass of the water in the container at this condition. The density of water is 
3/0.1 cmg= . Due to axial symmetry in the geometry of the container and the height 

distribution, the mass in the container can be expressed in cylindrical coordinates as  

 






 −
+===

RR

r
R

zz
zdrrrzdmm

0

2

2

12
1

0

)(
2)2()(       …………………    (4) 
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which has the exact integral 

 








 −
+= 2122

1
2

)(
R

zz
Rzm     ……………………………………………    (5) 

 

Substituting the specified values of 21 ,,, zandzR  into Eq. (5) yields  

 

ggramsm 388980.47121500 ==   

 

To illustrate the process of numerical double integration, let's solve this problem in Cartesian 

coordinates. The figure below illustrates a discretized Cartesian grid on the bottom of the 

container. In Cartesian coordinates, dydxdA = , and the differential mass in a differential 

column of height z(r) is given by 

 

dArzdm )(=    …………….……………………………………………    (6)  

 

Substituting Eq. (2) into Eq. (6), where 
222 yxr += , and integrating gives 

 

  dydxRyxzzzdmm  
−+−+== 222

121 )()(    ………….…………    (7) 

 

Substituting the specific values of 21 ,,, zandzR  into Eq. (7) gives 

 

  dydxyxm   ++= )(1.0100.1 22
   ………………………….…………    (8) 
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Due to symmetry about the x and y axis, Eq. (8) can be expressed as 

 

( ) dyyFdydxyxm

RR yx

  =












++=
00

)(

0

22 )(4)(1.010)0.1(4    ………...……    (9) 

where )(yF  is defined as 

 

  ++=

)(

0

22 )(1.010)(

yx

dxyxyF     …………………….….………….....…    (10) 

 

y  and  )(yx  are illustrated in the above figure. Thus, 

 

2/122 )( yRx −=    ………………………………………..………….....…    (11) 

   

Let's discretize the y-axis into 10 equally spaced increments with cmy 0.1= . For each 

value of )11,.....,2,1()1( =−= jyjy  let's calculate )(yx  from Eq. (11). At each value of y

, let's discretize the x-axis into )1)max(( −yi  equally spaced increments with cmx 0.1= , 

with a final increment finalx)(  between xyix −−= )1)1max(( and )(yx . The resulting 

geometrical parameters are presented in the following table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The values of )(yF , defined in Eq. (10), are evaluated by the trapezoid rule. As an example, 

consider j=6 for which 0.5=y cm. Equation (10) becomes  
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   =++=

00000.8

0

00000.8

0

2 )()25(1.010)0.5( dxxFdxxF     ………………...….....…    (12) 

The following table presents the integrand F(x) of Eq. (12). 

 

 

Integrating Eq. (12) by trapezoid rule gives 

 

041941.130)000.20900.18(
2

660254.0

]9.18)400.17100.16000.15

000.14400.13900.12600.12(2500.12[
2

0.1
)0.5(

=++

++++

++++=F

 

 

Repeating this procedure for every value of y  in the geometrical parameters table yields the 

results presented in the table below. 

 

 

 

 

 

 

 

 

 

 

 

Integrating Eq. (9) by the trapezoid rule, using the values of )(yF yields 

 

g

m

920883.4643]000000.0

)724144.81700000.105664426.118000000.126041941.130

128255.132068144.133410710.133492600.133(2500.133[
2

0.1
0.4

=+

+++++

++++=

 

 

The error is Error=4643.920883-4712.388980=-68.468047 g.  
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Unit-5: Interpolation and Curve Fitting 
 

The Figure below illustrates a set of tabular data in the form of a set of [x, f(x)] pairs. The 

function f(x) is known at a finite set (actually eight) of discrete values of x. The value of the 

function can be determined at any of the eight values of x simply by a table lookup. However, 

a problem arises when the value of the function is needed at any value of x between the discrete 

values in the table. The actual function is not known and cannot be determined form the 

tabular values. However, the actual function can be approximated by some known function, 

and the value of the approximating function can be determined at any desired value of x. This 

process, which is called interpolation, is the subject of this Chapter. The discrete data of the 

figure below are actually values of the function xxf /1)( = . 

In many applications, the values of the discrete data at the specific points are not all that 

is needed. Values of the function at points other than the known discrete points may be needed 

(i.e., interpolation). The derivative of the function may be required (i.e., differentiation). The 

integral of the function may be of interest (i.e., integration). These processes are performed 

by fitting an approximating function to the set of discrete data and performing the desired 

process on the approximating function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) interpolation              b) differentiation             c) integration 
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Many types of approximating functions exist. In fact, any analytical function can be used as 

an approximating function. Three of the more common approximating functions are: 

 

1. Polynomials. 

2. Trigonometric functions. 

3. Exponential functions. 

 

Approximating functions should have the following properties: 

 

1. The approximating function should be easy to determine. 

2. It should be easy to evaluate. 

3. It should be easy to differentiate. 

4. It should be easy to integrate. 

 

Polynomials satisfy all four of these properties. Consequently, polynomial approximating 

functions are used here to fit sets of discrete data for interpolation, differentiation, and 

integration. 

 

There are two fundamentally different ways to fit a polynomial to a set of discrete data:   

 

1. Exact fits. 

2. Approximate fits. 

 

An exact fit yields a polynomial that passes exactly through all of the discrete points, as 

illustrated in the figure below. This type of fit is useful for small sets of smooth data. An 

approximate fit yields a polynomial that passes through the set of data in the best manner 

possible, without being required to pass exactly through any of the data points. Approximate 

fits are useful for large sets of smooth data and small or large sets of rough data.  
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Direct Fit Polynomials 
 

First let's consider a completely general procedure for fitting a polynomial to a set of equally 

spaced or unequally spaced data. Given n+1 sets of data 

     ,)(,,.......,)(,,)(, 11 nnoo xfxxfxxfx  which will be written as ,),( oo fx  

,),(,......,),( 11 nn fxfx determine the unique nth-degree polynomial Pn(x) that passes 

exactly through the n+1 points: 

 

)1(................................................)( 2

21

n

non xaxaxaaxP ++++=  

 

For simplicity of notation, let ii fxf =)( . Substituting each data point into      Eq. (1) yields 

n+1 equations: 

 

).2(................................................

..........................................................

)1.2(................................................

)0.2(................................................

2

21

1

2

12111

2

21

nxaxaxaaf

xaxaxaaf

xaxaxaaf

n

nnnnon

n

no

n

onoooo

++++=

++++=

++++=

 

 

There are n+1 linear equations containing the n+1 coefficients a0 to an . Equation (2) can be 

solved for ao to an by Gauss elimination. The resulting polynomial is the unique nth-degree 

polynomial that passes exactly through the n+1 data points. The direct fit polynomial 

procedure work for both equally spaced data and unequally spaced data. 

 

 

Example: Direct fit polynomials. 

 

Solution: To illustrate interpolation by a direct fit polynomial, consider the simple function 

xxfy /1)( == , and construct the following set of six significant figure data: 

 

x f(x) 

3.35 0.298507 

3.40 0.294118 

3.50 0.285714 

3.60 0.277778 

  

Let's interpolate for y at x = 3.44 using linear, quadratic, and cubic interpolation. The exact 

value is  

 

...290698.0
44.3

1
)44.3()44.3( === fy  
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Let's illustrate the procedure in detail for a quadratic polynomial: 

 
2

2 )( xcxbaxP ++=  

 

To center data around x = 3.44, the first three points are used. Applying P2(x) at each of these 

data points gives the following three equations: 

 

2

2

2

)50.3()50.3(285714.0

)40.3()40.3(294118.0

)35.3()35.3(298507.0

cba

cba

cba

++=

++=

++=

 

 

Solving theses three equations for a, b, and c by Gauss elimination without scaling or pivoting 

yields 

 
2

2 0249333.0256080.0876561.0)( xxxP +−=  

 

Substituting x = 3.44 in the polynomial gives 

 

290697.0)44.3(0249333.0)44.3(256080.0876561.0)44.3( 2

2 =+−=P  

 

The error is 000001.0290698.0290697.0)44.3()44.3()44.3( 2 −=−=−= fPError . 

 

 

For a linear polynomial, use x = 3.4 and 3.5 to center that data around  x = 3.44. The resulting 

linear polynomial is  

 

xxP 0840400.0579854.0)(1 −=  

 

Substituting x = 3.44 in the polynomial gives 290756.0)44.3(1 =P  

 

 

 

For cubic polynomial, all four points must be used. The resulting cubic polynomial is  

 
32

3 00613333.00878000.0470839.0121066.1)( xxxxP −+−=  

 

Substituting x = 3.44 in the polynomial gives 290698.0)44.3(3 =P  . 
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The results are summarized below, where the results of linear, quadratic, and cubic 

interpolation and the errors, 290698.0)44.3()44.3( −= npError , are tabulated. The 

advantages of higher-degree interpolation are obvious. 

 

 

P(3.44) = 0.290756    Linear interpolation Error = 0.000058 

=0.290697    Quadratic interpolation =-0.000001 

=0.290698    Cubic interpolation =0.000000 

 

 

 

 

 

The main advantage of direct fit polynomials is that the explicit form of the approximating 

function is obtained, and the interpolation at several values of x can be accomplished simply 

by evaluating the polynomial at each value of x. The work required to obtain the polynomial 

does not have to be redone for each value of x. A second advantage is that the data can be 

unequally spaced. 

The main disadvantage of direct fit polynomials is that each time the degree of the 

polynomial is changed, all of the work required to fit the new polynomial must be redone.  

 

 

 

Direct Multivariate Polynomial Approximation 
 

Many problems arise in engineering and science when the dependent variable is a function of 

two or more independent variables, for example, z = f(x.y) is a two variable or bivariate, 

function. Such functions in general called multivariate functions. When multivariate function 

is given by tabular data, multivariate approximation is required for interpolation, 

differentiation, and integration. 

 

Consider the bivariate function, z = f(x.y), and the set of tabular data presented in the 

following table. The tabular data can be fit be a multivariate polynomial of the form 

 

.......),( 332222 ++++++++++== jyixhxyygxfyexdxycybxayxfz     

 

The number of data points must equal the number of coefficients in the polynomial. A linear 

bivariate polynomial in x and y is obtained by including the first four terms in the equation. A 

quadratic bivariate polynomial in x and y is obtained by including the first eight terms in the 

equation. The number of terms in approximating polynomial increases rapidly as the degree 

of approximations increases. This leads to ill-conditioned systems of linear equations for 

determining the coefficients. Consequently, multivariate high-degree approximation must be 

used with caution. 
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Example:  Direct multivariate linear interpolation. 

 

Solution: Consider the following values, use direct multivariate linear interpolation to 

calculate z(x,y) = z(1100, 1225),  

 

  x  

y 800 1000 1200 

1150 1380.4 1500.2 1614.5 

1200 1377.7 1499.0 1613.6 

1250 1375.2 1497.1 1612.6 

 

 

The form of the approximating polynomial is 

 

dxycybxayxfz +++== ),(  

 

 

Substituting the four data points that bracket x = 1100 and y = 1225 into the polynomial gives 

 

dcba

dcba

dcba

dcba

)1250()1200()1250()1200(6.1612

)1200()1200()1200()1200(6.1613

)1250()1000()1250()1000(1.1497

)1200()1000()1200()1000(0.1499

+++=

+++=

+++=

+++=

 

 

Solving for a, b, c, and d by Gauss elimination yields 

 

xyyxyxfz 3100900.01280.04650.06.1079),( −+−+==  

 

Substitute x = 1100 and y = 1225 in the approximating polynomial gives z(1100, 1225)= 

1555.5. The error in this result is 5.00.15565.1555 −=−=Error . The advantage of this 

approach is that we can use the same approximating polynomial to evaluate other values of 

z(x,y),if required, without reevaluating the polynomial coefficients. 
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Least Squares Approximation 
 

An approximate fit yields a polynomial that passes through the set of points in the best possible 

manner without being required to pass exactly through any of the points. Several definitions 

of best possible manner exist. Consider the set of discrete points,   ),()(, iiii YxxYx = , and 

the approximate polynomial y(x) chosen to represent the set of discrete points, as illustrated 

in the figure below. The discrete points do not fall on the approximating polynomial. The 

deviations (i.e., distances) of the points from the approximating function must be minimized 

in some manner.  

 

 

 

 

 

 

 

 

 

 

 

 

If the values of the independent variable xi are considered exact, then all the deviation is 

assigned to the dependent variable Yi, and the deviation ei is the vertical distance between Yi 

and yi=f(xi). Thus, 

 

iii yYe −=  

 

It is certainly possible that the values of Yi are quite accurate, but the corresponding values 

of xi are in error. In that case, the deviation would be measured by the horizontal distance 

illustrated in the above figure. If xi and Yi both have uncertainties in their values, then the 

perpendicular distance between a point and the approximating function would be the 

deviation. The usual approach in the approximate fitting of tabular data is to assume that the 

deviation is the vertical distance between a point and the approximating function, as specified 

by the above equation. 
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Several best criteria are illustrated in the next figure for a straight-line approximation. From 

the figure we can see that the least squares criteria, in which the sum of the squares of the 

deviations is minimized. The least squares procedure yields a good compromise criterion for 

the best fit approximation. 

 

   

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

The Straight-Line Approximation 
 

The simplest polynomial is a linear polynomial, the straight lint. Least squares straight line 

approximations are an extremely useful and common approximate fit, which is determined as 

follows. Given N data points, (xi ,Yi), fit the best straight line through the set data. The 

approximating function is 

 

)1(............................................................xbay +=  

 

At each value of xi, Eq. (1) gives 

 

)..,..........,1( Nixbay ii =+=  

 

The deviation ei at each value of xi is  

 

)..,..........,1( NiyYe iii =−=  

 

Best fit criteria. (a) Minimize  ie . (b) Minimize  ie . (c) Minimax. (d) Least squares. 
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The sum of the squares of the deviations defines the function S(a,b): 

 


==

−−==
N

i

ii

N

i

i bxaYebaS
1

2

1

2 )()(),(  

 

The function S(a,b) is a minimum when 0// == bSaS . Thus,   

 

)2(.........................

0)()(2

0)1()(2

1
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


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



=−−−=
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

N

i

iii

N

i

ii

xbxaY
b

S

bxaY
a

S

 

 

Dividing Eq. (2) by 2 and rearranging yields 

 

 

 

 

 

 

 

 

 

Which is called the normal equations of the least squares fit. They can be solved for a and b 

by Gauss elimination. 

 

 

 

Example: Least squares straight line approximation. 

 

Solution: Consider the constant pressure specific heat for air at low temperatures presented 

in the following table, where T is the temperature and Cp is the specific heat. Determine a 

least squares straight line approximation for the set of data: 

 

T 300 400 500 600 700 800 900 1000 

Cp 1.0045 1.0134 1.0296 1.0507 1.0743 1.0984 1.1212 1.1410 

  

TbaC p +=  
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i
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i

i

N

i

i

N

i

i

N

i

i

Yxxbxa

YxbNa





===

==

=+

=+

11

2

1

11

 



Numerical Analysis                                                                       Unit-5: Interpolation and Curve Fitting 
___________________________________________________________________________  

Page 11 of 16 
 

For this problem the equation becomes 

 

ip

N

i

i

i

i

i

i

i

ip

i

i

CTTbTa

CTba

,

1

8

1

2
8

1

8

1

,

8

1

8





===

==

=+

=+

 

 

Evaluating the summations and substituting into the above equations gives 

 

74.5632000,800,35200

5331.852008

=+

=+

ba

ba
 

 

Solving for a and b be Gauss elimination without scaling or pivoting yields 

 

TC p

310205298.0933194.0 −+=  

 

Substituting the initial values of T into this equation gives the results presented in the next 

table and figure, which presents the exact data, the least squares straight line approximation, 

and the percent error. The straight line is not a very good approximation of the data. 
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High-Degree Polynomial Approximation 
 

Given the N data points, (xi ,Yi), fit the best nth-degree polynomial through the set of data. 

Consider the nth-degree polynomial: 

 
n

no xaxaxaay ++++= .........2

21  

 

The sum of the squares of the deviation is given by 
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The function ),...,,( 10 naaaS is a minimum when 
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Dividing by 2 and rearranging yields the normal equations: 

 

 

 

 

 

 

 

 

 

 

And this can be solved for ao to an by Gauss elimination. 

 

 

Example: Least squares quadratic polynomial approximation. 

 

Solution: Determine a least squares quadratic polynomial approximation for this set of data: 

 

x 1000 1500 2000 2500 3000 

Y 1.1410 1.2095 1.2520 1.2782 1.2955 

2xcxbay ++=    
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For this problem the polynomial becomes 

 


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Or may be represented in matrix form 
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10125.1421055105.22

1055105.221010

105.2210105

c

b

a

 

 

Solving for a, b, and c by Gauss elimination yields 

 

263 100339143.010211197.0965460.0 xxy −− −+=  

 

Substituting the initial values of x into the approximating polynomial gives the results 

presented in the next table and figure. The quadratic polynomial is           a reasonable 

approximation of the discrete data. 
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Multivariate Polynomial Approximation 
 

Many problems arises in engineering and science where the dependent variable is a function 

of two or more independent variable, for example, z = f(x,y) is a two-variable, or bivariate, 

function.  

Given the N data points, (xi, yi, Zi), fit the best linear bivariate polynomial through the set of 

data. Consider the linear polynomial: 

 

cybxaz ++=    

 

The sum of the squares of the deviations is given by 

 

 −−−== 22 )()(),,( iiii cybxaZecbaS  

 

The function S(a,b,c) is a minimum when 
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Dividing by 2 and rearranging yields the normal equations: 
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Which can be solved for a, b, and c by Gauss elimination. 

 

A linear fit to a set of bivariate data may be inadequate. Consider the quadratic bivariate 

polynomial: 

 

xyfyexdycxbaz +++++= 22
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The sum of the squares of the deviations is given by 

 

 −−−−−−== 2222 )()(),,,,,( iiiiiiii yxfeydxcybxaZefedcbaS  

 

The function S(a,b,c,d,e,f) is a minimum when 
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a
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Dividing by 2 and rearranging yields the normal equations: 
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2232
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Which can be solved for a to f by Gauss elimination. 

 

 

Example: Least squares quadratic bivariate polynomial approximation. 

 

Solution: Consider the following values, use Least squares quadratic bivariate polynomial to 

calculate z(x,y) = z(1100, 1225),  

 

  x  

y 800 1000 1200 

1150 1380.4 1500.2 1614.5 

1200 1377.7 1499.0 1613.6 

1250 1375.2 1497.1 1612.6 

 

 

The form of the approximating polynomial is 

 

xyfyexdycxbaz +++++= 22
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Evaluating the summation and substituting in the matrix yields 
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A problem arises for high-degree polynomials. The coefficients in the matrix are varying over 

a range of several orders of magnitude, which gives rise to ill-conditioned system. 

Normalizing each equation helps the situation. Double precision calculations are required.   

 

Each raw in the matrix should be normalized by the exponential term in the first coefficient of 

each raw. Solving the normalized equations by Gauss eliminations yields 

 

xyyxyxyxz 0000825.0000040.00000775.0020500.0645500.0033.914),( 22 +−−−+=  

Evaluating z(1100, 1225) = 1556.3. 

 

The error is, Error = 1556.3 - 1556.0 = 0.3, which is smaller than the error incurred by 

interpolation using direct multivariate linear approximation. 
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Unit-6: Initial Value Problem 
 

Introduction 
A classic example of an initial-value ODE is the general nonlinear first order ODE: 

 

00 )(),( ytyytfy ==  

 

This equation applies to many problems in engineering and science. Consider the lumped 

mass m illustrated in the figure. Heat transfer from the lumped mass m to its surroundings by 

radiation is governed by the Stefan-Boltzmann law of radiation: 

 

( )44

ar TTAq −=•    

 

where 
•

rq is the heat transfer rate (J/s), A is the surface area of the lumped mass (m
2
),  is 

the Stefan-Boltzmann constant (5.67 × 10
-8
 J/m

2
-K

4
-s),  is the emissivity of the body 

(dimensionless), which is the ratio of the actual radiation to the radiation from a black body, 

T is the internal temperature of the lumped mass (K), and Ta is the ambient temperature (K) 

(i.e., temperature of the surroundings). The energy E stored in the lumped mass is given by  

 

TCmE =  

 

where m is the mass of the lumped mass (kg) and C is the specific heat of the material (J/kg-

K). An energy balance states that the rate at which the energy stored in the lumped mass 

changes is equal to the rate at which heat is transferred to the surroundings. Thus,  

 

( ) ( )44)
ar TTAq

dt

TCmd
−−=−= •   

 

The minus sign is required so that the rate of change of stored energy is negative when T is 

greater than Ta. For constant m and C, the last equation can be written as 

 

( )
mC

A
TTT

dt

dT
a


 =−−== where44

  

 

 

 

 

 

 

 

 

 
Heat transfer by radiation from a lumped mass 
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Consider the case where the temperature of the surroundings is constant and the initial 

temperature of the lumped mass is T(0.0)=T0 . The initial-value problem is stated as follows: 

 

( ) 0

44 )0(),( TTTtfTTT a ==−−=   

 

This is a nonlinear first-order initial-value ODE. The solution of this equation is the function 

T(t), which describes the temperature history of the lumped mass corresponding to the initial 

conditions, T(0.0)=T0 .   

 

 

An example of a higher-order initial-value ODE is given by the nonlinear second-order ODE 

governing the vertical flight of a rocket. The physical system is illustrated in the figure. 

Applying Newton's second law of motion,  = maF , yields 

 

yMVMMaDMgTF ===−−=  

 

where T is the thrust developed by the rocket motor (N), M is the instantaneous mass of the 

rocket (kg), g is the acceleration of gravity (m/s
2
), which depends on the altitude y (m), D is 

the aerodynamic drag (N), a is the acceleration of the rocket (m/s
2
), V is the velocity of the 

rocket (m/s), and y is the altitude of the rocket (m). The initial velocity, V (0.0) = V0 , is zero, 

and the initial elevation, y(0.0) = y0 , is zero. Thus, the initial conditions for the equation are 

 

0.0)0.0(and0.0)0.0()0.0( === yyV  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vertical flight of a rocket 
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In general, the thrust T is a variable, which depends on time and altitude. The instantaneous 

mass M is given by 

 


•

−=

t

o dttmMtM
0

)()(  

where Mo is the initial mass of the rocket (kg), and )(tm
•

is the instantaneous mass flow rate 

being expelled by the rocket (kg/s). The instantaneous aerodynamic drag D is given by  

 

2)(
2

1
),,(),,( VAyyVCyVD D  =  

 

where CD is an empirical drag coefficient (dimensionless), which depends on the rocket 

geometry, the rocket velocity V and the properties of the atmosphere at altitude y (m);  is 

the density of the atmosphere (kg/m
3
), which depends on the altitude y (m);  and A is the cross-

sectional frontal area of the rocket (m
2
). 

 

Combining the last equations yields the following second-order nonlinear initial-value ODE: 

 


••

−

−−

−

=
t
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D

t

o dttmM

VAyyVC

yg

dttmM

ytF
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0
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0
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2

1
),,(

)(
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),(
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Consider a simpler model where T, 
•

m , and g are constant, and the aerodynamic drag D is 

neglected. In that case, the last equation becomes 

 

0.0)0.0()0.0(and0.0)0.0( ===−

−

=
•

Vyyg

tmM

F
y

o

 

 

The solution of the last two equations is the function y(t), which describes the vertical motion 

of the rocket as a function of time t.  
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One-Dimensional Initial-Value Ordinary Differential Equations 
 
The initial-value ODEs govern propagation problems, which are initial-value problems in 

open domains. Consequently, initial-value ODEs are solved numerically by marching 

methods. This section is devoted to presenting the basic properties of finite difference methods 

for solving initial-value (i.e., propagation) problems and to developing several specific finite 

difference methods. 

The objective of a finite difference method for solving an ordinary differential equation 

(ODE) is to transform a calculus problem into an algebra problem by: 

 

1. Discretizing the continuous physical domain into a discrete finite difference grid. 

2. Approximating the exact derivatives in the ODE by algebraic finite difference 

approximations (FDAs). 

3. Substituting the FDAs into the ODE to obtain an algebraic finite difference equation 

(FDE). 

4. Solving the resulting algebraic FDE. 

 

 

Finite difference approximations 
 
Now that the finite difference grid has been specified, finite difference approximations (FDAs) 

of the exact derivatives in the ODE must be developed. This is accomplished using the Taylor 

series approach developed in Chapter 4. 

In the development of finite difference approximations of differential equations, a 

distinction must be made between the exact solution of the differential equation and the 

solution of the finite difference equation which approximates the exact differential equation. 

For the remainder of this chapter, the exact solution of the ODE is denoted by an overbar on 

the symbol for the dependent variable [i.e., )(ty ], and the approximate solution is denoted 

by the symbol for the dependent variable without an overbar [i.e., )(ty ]. Thus, 

 

solutioneapproximat)(

solutionexact)(

=

=

ty

ty
    

 

Exact derivatives, such as y , can be approximated at a grid point in terms of the values of 

y at that grid point and adjacent grid points in several ways. Consider the derivative y . 

Writing the Taylor series for 1+ny using grid point n as the base point gives 

 

.....
6

1

2

1 32

1 ++++=+ tytytyyy
nnnnn  
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This equation can be expressed as the Taylor polynomial with remainder: 

 

1)(2

1
!

1
.....

2

1 +

+ +++++= mm

n

m

nnnn Rty
m

tytyyy  

 

where the remainder R
m+1 

is given by 

 

1)1(1 )(
!)1(

1 +++ 
+

= mmm ty
m

R   

 

where ttt + . The remainder term is simply the next term in Taylor series evaluated 

at t = τ. If the infinite Taylor series is truncated after the m
th
 derivative term to obtain an 

approximation of 1+ny , the remainder term Rm+1 is the error associated with the truncated 

Taylor series. In most cases, our main concern is the order of the error, which is the rate at 

which the error goes to zero as 0→t . 

Solving the last equation for 
n

y  yields 

 

......
6

1

2

1 21 −−−


−
= + tyty

t

yy
y

nn

nn

n
 

 

If this equation is terminated after the first term on the right-hand side, it becomes 

 

ty
t

yy
y nn

n
−



−
= + )(

2

11   

 

A finite difference approximation of 
n

y , which will be denoted by 
n

y , can be obtained from 

the last equation by truncating the remainder term. Thus, 

 

 

 

 

 

 

where )(0 t  term is shown to remind us of the order of the remainder term, which was 

truncated, which is the order of the approximation of 
n

y . The remainder term which has 

been truncated to obtain the last equation is called the truncation error of the finite difference 

approximation of 
n

y . This equation is a first order forward-difference approximation of y

at grid point n. 

A first order backward-difference approximation of y  at grid point n+1 can be obtained 

by writing the Taylor series for ny  using grid point n+1 as the base point and solving for 

1+


n
y . Thus, 

)(01 t
t

yy
y nn

n




−
= +
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Truncating the remainder term yields 

 

 

 

 

 

A second-order centered-difference approximation of y  at grid point 
2

1
+n  can be obtained 

by writing the Taylor series for nn yandy 1+  using grid point 
2

1
+n  as the base point, 

subtracting the two Taylor series, and solving for     
2

1
+


n

y . Thus, 

 

......
26

1

22

1

2

......
26

1

22

1

2

3

2

1

2

2

1

2

1

2

1

3

2

1

2

2

1

2

1

2

11

+






 
−+







 
−+







 
−+=

+






 
+







 
+







 
+=

++++

++++
+

t
y

t
y

t
yyy

t
y

t
y

t
yyy

nnnn
n

nnnn
n

 

 

Subtracting the second equation from the first one, and solving for 
2

1
+


n

y  yields 
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1
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y nn
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−
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Truncating the remainder term yields 

 

 

 

 

 

 

Note that the three (forward-backward-centered) equations of y  are identical algebraic 

expressions. They all yield the same numerical value. The differences in the three finite 

difference approximations are the value of the truncation errors. 

All the above equations can be applied to steady space marching problems simply by 

changing t to x in all the equations. 
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Occasionally a finite difference of an exact derivative is presented without its development. In 

such cases, the truncation error and order can be determined by a consistency analysis using 

Taylor series. For example, consider the following finite difference approximation (FDA): 

 

t

yy
FDA nn



−
= +1

 

 

 

 The Taylor series for the approximate solution y(t) with base point n is 

 

......
2

1 2

1 +++=+ tytyyy nnnn  

 

Substituting the Taylor series for yn+1 into the FDA, yields 

 

......
2

1
......

2

1 2

++=


−+++
= tyy

t

ytytyy
FDA nn

nnnn

 

 

As 0→t ,  FDA → ny , which shows that FDA is an approximation of the exact derivative 

y  at grid point n. The order of FDA is 0(∆t). The exact form of the truncation error relative 

to grid point n is determined. Choosing other base points for the Taylor series yields the 

truncation errors relative to those base points. 

A finite difference approximation (FDA) of an exact derivative is consistent with the 

exact derivative if the FDA approaches the exact derivative as 0→t , as illustrated in the 

last equation. Consistency is an important property of finite difference approximation of 

derivatives. 

 

 

 Finite difference equations 
 

Finite difference solutions of differential equations are obtained by discretizing the continuous 

solution domain and replacing the exact derivatives in the differential equation by finite 

difference approximations to obtain a finite approximation of the differential equation. Such 

approximations are called finite difference equations (FDEs).    

Consider the general nonlinear initial-value ODE: 

 

0)0(),( yyytfy ==  
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Choose a finite difference approximation (FDA), y , for y . For example: 
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Substitute the FDA for y into the exact ODE,  ),( ytfy = , and solve for yn+1: 
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Solving the first equation for yn+1 yields 

 

nnnnnn ftyytftyy +=+=+ ),(1    …………………………………..   (1) 

 

Solving the second equation for yn+1 yields 

 

1111 ),( ++++ +=+= nnnnnn ftyytftyy    ……………………………… (2) 

 

 

Equation (1) is an explicit finite difference equation, since fn does not depend on yn+1 , and it 

can be solved explicitly for yn+1. Equation (2) is an implicit finite difference equation, since 

fn+1 depends on yn+1 . If the ODE is linear, them fn+1 is linear in yn+1 , and it can be solved 

directly for yn+1 . If the ODE is nonlinear, then fn+1 us nonlinear in yn+1 , and additional effort 

is required to solve it for yn+1. 

 

 

Smoothness 
 

Smoothness refers to the continuity of a function and its derivatives. The finite difference 

method of solving a differential equation employs Taylor series to develop finite difference 

approximations (FDAs) of the exact derivatives in the differential equation. If a problem has 

discontinuous derivatives of some order at some point in the solution domain, then FDAs 

based on the Taylor series may misbehave at that point.  

For example, consider the vertical flight of a rocket illustrated in Figure (II.6). When the 

rocket engine is turned off, the thrust drops to zero instantly. This causes a discontinuity in 

the acceleration of the rocket, which causes a discontinuity in the second derivative of the 

altitude y(t). The solution is not smooth in the neighborhood of the discontinuity in the second 

derivative of y(t). 

At a discontinuity, single point methods or extrapolation methods should be employed 

since the step size in the neighborhood of the discontinuity can be chosen so that the 



Numerical Analysis                                                                                         Unit-6: Initial Value Problem 
___________________________________________________________________________  

Page 10 of 35 
 

discontinuity occurs at a grid point. Multipoint methods should not be employed in the 

neighborhood of a discontinuity in the function or its derivatives. 

Problems which do not have any discontinuities in the function, or its derivatives are 

called smoothly varying problems. Problems which have discontinuities in the function, or its 

derivatives are called non-smoothly varying problems.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Numerical Analysis                                                                                         Unit-6: Initial Value Problem 
___________________________________________________________________________  

Page 11 of 35 
 

The First-Order Euler Methods 
 
The explicit Euler method and the implicit Euler method are two first-order finite difference 

methods for solving initial-value ODEs. Although these methods are too inaccurate to be of 

much practical value, they are useful to illustrate many concepts relevant to the finite 

difference solution of initial-value ODEs. 

 

 

The Explicit Euler Method 
 

Consider the general nonlinear first-order ODE: 

 

00 )(),( ytyytfy ==  

 

Choose point n as the base point and develop a finite difference approximation of this equation 

at that point. The finite difference grid is illustrated in the figure, where the cross (i.e., ×) 

denotes the base point for the finite difference approximation of the equation. The first order 

forward-difference finite difference approximation of  y  is given previously by 

 

ty
t

yy
y nn

n
−



−
= + )(

2

11   

 

 

 

 

 

 

 

 

 

Substituting this equation in the general nonlinear first-order ODE and evaluating ),( ytf

at point n yields 

 

nnnn
nn fytfty
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Solving for 1+ny  gives 

 

)(0)(
2

1 22

1 tftytyftyy nnnnnn ++=++=+    

 

Finite difference grid for the explicit Euler method 
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Truncating the remainder term, which is )(0 2t , and solving for yn+1 yields the explicit 

Euler finite difference equation (FDE): 

 

 

 

 

 

where the )(0 2t  term is included as a remainder of the order of the local truncation error. 

Several features of this equation are summarized below: 

 

1. The FDE is explicit, since fn does not depend on yn+1. 

2. The FDE requires only one known point. Hence, it is a single point method. 

3. The FED requires only one derivative function evaluation [i.e. f(t,y)]    per step. 

4. The error in calculating yn+1 for a single step, the local truncation error, is )(0 2t . 

5. The global (i.e., total) error accumulated after N steps is 0(∆t). This result is derived 

in the following paragraph. 

 

The explicit Euler finite difference equation is applied repetitively to march from the initial 

point t0 to the final point, tN , as illustrated in Figure (5.6). The solution at point N is 

 

( ) 
−

=

+

−

=

+ +=−+=
1

0

10

1

0

10

N

n

n

N

n

nnN yyyyyy  

 

The total truncation error is given by 

 

2
1

0

2

0 )(
2

1
)(

2

1
Error tyNtyy

N

n

n =







+= 

−

=

  

 

where Ntt 0 . The number of steps N is related to the step size ∆t as follows: 

 

t

tt
N N



−
= 0

  

Substituting the last equation in the error equation yields 

 

( ) )(0)(
2

1
Error 0 ttyttN =−=   

 

Consequently, the global (i.e., total) error of the explicit Euler FDE is 0(∆t), which is the 

same as the order of the finite difference approximation of the exact derivative y , which is 

0(∆t), as shown previously. 

)(0 2

1 tftyy nnn +=+  
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The result developed in the preceding paragraph applies to all finite difference 

approximations of first-order ordinary differential equations. The order of the global error is 

always equal to the order of the finite difference approximation of the exact derivative y . 

The algorithm base on the repetitive application of the explicit Euler FEE to solve initial-

value ODEs is called the explicit Euler method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: The explicit Euler method 

 

Solution: Let's solve the radiation problem presented earlier using the explicit Euler finite 

difference equation. The derivative function is ( )44),( aTTTtf −−=   . Thus, 

 

( )44

1 annn TTtTT −−=+   ,   𝛼 = −4.0 × 10−12 , 𝑇𝑎 = 250 ,  𝑇0 = 2500 

 

Let st 0.2= . For the first time step, 

 

( )( )
( ) 531250.2187234375.1560.20.2500

234375.1560.2500.2500100.4

1

4412

0

=−+=

−=−−= −

T

f
 

 

The results and the result of the subsequent time steps for t from 4.0s to 10.0s are summarized 

in the following table. The results for ∆t =1.0s are also presented. 

 

 

 

 

 

 

 

Repetitive application of the explicit Euler method. 
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Several important features of the explicit Euler method are illustrated in that table. First, the 

solutions for both step sizes are following the general trend of the exact solution correctly. 

The solution for the smaller step size is more accurate than the solution for the larger step 

size. In fact, the order of the method can be estimated by comparing the errors at t = 10.0s. 

Thus, 

 

( ) ( ) ( )( )

( ) ( ) ( )( )0.1
2

1
0.1

0.2
2

1
0.2

0

0





TtttE

TtttE

N

N

−==

−==

 

 

Assuming that the value of  ( )T   are approximately equal, the ratio of the theoretical error 

is  

( )
( )

15.2
629260.28

515406.61

0.1

0.2
Ratio =

−

−
=

=

=
=

tE

tE
 

 

The ratio shows that the method is first order. The value of 2.15 is not exactly equal to the 

theoretical value 2.0 due to the finite step size. The theoretical value of 2.0 is achieved only in 

the limit as 0→t  . 

Another feature illustrated in the table is that the errors are relatively large. This is due 

to the large first-order, 0(∆t), truncation error. The errors are all negative, indicating that 

the numerical solution leads to the exact solution. This occurs because the derivative function 

f(t,T) decreases as t increases as illustrated in the table. The derivative function in the FDE 

is evaluated at point n, the beginning of the interval of integration, where it has its largest 

value for the interval. Consequently, the numerical solution leads the exact solution. 
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The final feature of the explicit Euler method which is illustrated in the table is that the 

numerical solution approaches the exact solution as the step size decreases. This property of 

a finite difference method is called convergence. Convergence is necessary for a finite 

difference method to be of any use in solving a differential equation. 

 

__________________________________________________________________________     

 

When the base point for the finite difference approximation of an ODE is point n, the unknown 

value yn+1 appears in the finite difference approximation of y  , but not in the derivative 

function ),( ytf . Such FDEs are called explicit FDEs. The explicit Euler method is the 

simplest example of an explicit FDE. 

When the base point for the finite difference approximation of an ODE is point n+1, the 

unknown value yn+1 appears in the finite difference approximation of y  and in the derivative 

function ),( ytf . Such FDEs are called implicit FDEs. 

 

 

The Implicit Euler Method 
 

Consider the general nonlinear first-order ODE: 

 

00 )(),( ytyytfy ==  

 

 

 

 

 

 

 

 

Choose point n+1 as the base point and develop a finite difference approximation of the above 

general nonlinear first-order ODE at that point. The finite difference grid is illustrated in 

Figure (5.7). The first-order backward difference finite difference approximation of y  is 

given previously by: 

 

ty
t

yy
y n

nn

n
+



−
=

+
+

+
)(

2

1
1

1

1
   

 

Substituting this equation into the general nonlinear first-order ODE, and evaluating ),( ytf  

at point n+1 yields 

 

( ) 1111
1 ,)(

2

1
++++

+ ==+


−
nnnn

nn fytfty
t

yy
  

Finite difference grid for the implicit Euler method. 
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Solving for 1+ny  gives 

 

( )2

1

2

111 0)(
2

1
tftytyftyy nnnnnn ++=−+= ++++   

 

Truncating the ( )20 t  remainder term yields the implicit Euler FDE: 

 

 

 

 

 

 

Several features of this equation are summarized below: 

 

1. The FDE is implicit, since fn+1 depends on yn+1. If f(t,y) is linear in y, then fn+1 is linear 

in yn+1, and this equation is a linear FDE which can be solved directly for yn+1. If f(t,y) 

is nonlinear in y, then the equation is a nonlinear FDE, and additional effort is 

required to solve for yn+1. 

2. The FDE is a single-point FDE. 

3. The FDE requires only one derivative function evaluation per step if f(t,y) is linear in 

y. If f(t,y) is nonlinear in y, the equation is nonlinear in yn+1, and several evaluations of 

the derivative function may be required to solve the nonlinear FDE. 

4. The single-step truncation error is ( )20 t , and the global error is ( )t0 . 

 

The algorithm based on repetitive application of the implicit Euler FDE to solve initial-value 

ODEs us called the implicit Euler method. 

The derivative function ),( ytf may be linear or nonlinear in y . When ),( ytf  is 

linear in y , the corresponding FDE is linear in yn+1, for both explicit FDEs and implicit 

FDEs. When ),( ytf  is nonlinear in y , explicit FDEs are still linear in yn+1. However, 

implicit FDEs are nonlinear in yn+1, and special procedures are required to solve for yn+1. One 

of the procedures (Newton's method) is discussed in the next example. 

   

 

 

 

 

 

 

 

 

 

 

( )2

11 0 tftyy nnn += ++  
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Example: The implicit Euler method. 

 

Solutions: Let's solve the radiation problem presented earlier using the implicit Euler finite 

difference equation. The derivative function is ( )44),( aTTTtf −−=   . Thus, 

 

( )44

11

11

annn

nnn

TTtTT

ftTT

−−=

+=

++

++


 

 

This equation is a nonlinear fourth-order polynomial FDE. Procedure for solving nonlinear 

implicit FDEs is presented in the following using Newton's method.  

 

 

Rearranging the last equation into the form of )( 11 ++ = nn yGy or, 

 

( ) 0)( 111 =−= +++ nnn yGyyF  

 

Expanding )( 1+nyF in a Taylor series about the value yn+1 and evaluating at 1
~

+ny  yields 

 

( ) ( ) ( )( ) 0.......~~
11111 =+−+= +++++ nnnnn yyyFyFyF  

 

where 1
~

+ny  is the solution of )( 11 ++ = nn yGy . Truncating the last equation after the first-

order term and solving for yn+1 yields 

 

( )
( ))(

1

)(

1)(

1

)1(

1 k

n

k

nk

n

k

n
yF

yF
yy

+

+

+

+

+


−=  

 

The last equation must be solved iteratively. Newton's method works well for nonlinear 

implicit FDEs. A good initial guess may be required. 

 

 

 

Returning back to our example where: 

 

( )44

11

11

annn

nnn

TTtTT

ftTT

−−=

+=

++

++


 

 

Rearranging the equation to be solved using Newton's method yields 

 

( ) ( ) 044

111 =−+−= +++ annnn TTtTTTF   
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The derivative of ( )1+nTF  is 

 

( ) 3

11 41 ++ +=
nn TtTF   

 

Then 

( )
( ))(

1

)(

1)(

1

)1(

1 k

n

k

nk

n

k

n
TF

TF
TT

+

+
+

+

+


−=
 

 

Let st 0.2= . For the first time step, 

 

 

( ) ( )( )( )
( ) ( )( ) 3

1

12

1

4412

11

100.40.241

0.2500.2500100.40.20.2500

TTF

TTF

−

−

+=

−+−=
 

 

Let KT 0.2500)0(

1 = . Then 

 

( ) ( )( )( )

( ) ( )( )

687500.2291
500000.1

468250.312
0.2500

500000.10.2500100.40.241

468250.312

0.2500.2500100.40.20.25000.2500

)1(

1

312)0(

1

4412)0(

1

=−=

=+=

=

−+−=

−

−

T

TF

TF

 

 

 Repeating the procedure three times yields the converged result 785819.2282)4(

1 =T . 

These results are presented in the following table, along with the final results for the 

subsequent time steps from t = 4.0s to 10.0s. The results for ∆t =1.0s are also presented. 
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The results presented in the last table behave generally the same as the results presented in 

the explicit Euler method. An error analysis at t = 10.0s gives 

 

( )
( )

90,1
468684.25

455617.48

0.1

0.2
Ratio ==

=

=
=

tE

tE
 

 

which shows that the method is first order. The errors are all positive, indicating that the 

numerical solution lags the exact solution. This result is in direct contrast to the error 

behavior of the explicit Euler method, where a leading error was observed. In the present 

case, the derivative function of the FDE is evaluated at point n+1, the end of the interval of 
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integration, where it has its smallest value. Consequently, the numerical solution lags the 

exact solution. 

  

 

Comparisons of the Explicit and Implicit Euler Methods 

The explicit Euler method and the implicit Euler method are both first-order [i.e., 0(∆t)] 

methods. As illustrated in the last two examples, the errors in these two methods are 

comparable (although of opposite sign) for the same step size. For nonlinear ODEs, the 

explicit Euler method is straightforward, but the implicit Euler method yields a nonlinear 

FDE, which is more difficult to solve. So, what is the advantage, if any, of the implicit Euler 

method? 

The implicit Euler method is unconditionally stable, whereas the explicit Euler method 

is conditionally stable. This difference can be illustrated by solving the linear first order 

homogeneous ODE 

 

1)0(0 ==+ yyy  

 

For which yytf −=),( , by both methods. The exact solution is  

 

tety −=)(  

 

Solving the ODE by the explicit Euler method yields the following FDE: 

 

( )nnnnn ytyftyy −+=+=+1  

 

 

 

 

Solutions of this equation for several values of ∆t are presented in Figure (5.8). The numerical 

solution behaves in a physically correct manner (i.e., decrease monolithically) for 

→ tt as0.1 , and approaches the exact asymptotic solution, 0)( =y . For 0.1=t

, the numerical solution reaches the exact asymptotic solution, 0)( =y , in one step. 

For 0.20.1  t , the numerical solution overshoots and oscillates about the exact 

asymptotic solution, 0)( =y , in a damped manner and approaches the exact asymptotic 

solution as →t . For 0.2=t , the numerical solution oscillates about the exact 

asymptotic solution in a stable manner but never approaches the exact asymptotic solution. 

Thus, solutions are stable for 0.2t .  

For 0.2t , the numerical solution oscillates about the exact asymptotic solution in 

an unstable manner that grows exponentially without bound. This is numerical instability. 

Consequently, the explicit Euler method is conditionally stable for this ODE, that is, it is 

stable only for 0.2t . 

( ) nn yty −=+ 11  
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The oscillatory behavior for 0.20.1  t is called overshoot and must be avoided. 

Overshoot is not instability. However, it does not model physical reality, thus it is 

unacceptable. The step size ∆t generally must be 50 percent or less of the stable step size to 

avoid overshoot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solving the ODE by the implicit Euler method gives the following FDE: 

  

( )111 +++ −+=+= nnnnn ytyftyy  

 

This equation is linear in yn+1, it can be solve directly for yn+1 to yield 

 

 

 

 

 

 

Which can be solved for several values of ∆t as presented in the figure. The numerical solution 

behaves in a physically correct manner (i.e., decrease monotonically) for all values of ∆t. 

This is unconditional stability, which is the main advantage of implicit methods. The error 

increase as ∆t increases, but this is an accuracy problem, not a stability problem. 

 

 

Behavior of the explicit Euler method 

t

y
y n

n
+

=+
1

1  
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Behavior of the implicit Euler method 
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Runge-Kutta Methods 
 

Runge-Kutta methods are a family of single-point methods which evaluate nn yyy −= +1  as 

the weighted sum of several ),2,1( = iyi , where each iy  is evaluated as t  multiplied 

by the derivative function ),( ytf , evaluated at the same point in the range 1+ nn ttt , and 

the ),2,1( =iCi  are the weighting factors. Thus, 

 

( )nnnnnn yyyyyy −+=+= ++ 11    …………………………...………   (23) 

 

where ny  is given by 

 

   ………………………….   (24) 

 

 

The second order Runge-Kutta method is obtained by assuming that nn yyy −= +1  is a 

weighted sum of two sy' : 

 

    

……………………………...…….…..   (25) 

where 1y  is given by the explicit Euler FDE: 

 

( ) nnn ftytfty == ,1    …….…………………………………………   (26) 

 

and 2y  is based on ( )ytf ,  evaluated somewhere in the interval 1+ nn ttt : 

 

( ) ( ) 12 , yyttfty nn ++=      ...………………………..………   (27) 

 

where  and are to be determined. Let ht = . Substituting 1y  and 2y  into Eq. (25) 

gives 

 

( ) ( ) ( ) 1211 , yyttfhCfhCyy nnnnn ++++=+     …...………..   (28) 

 

Expressing ),( ytf  in a Taylor series at grid point n gives 

 

........),( +++= yfhffytf
nyntn    …………  …………………..   (29) 

 

 

........332211 +++= yCyCyCy  

22111 yCyCyy nn ++=+  
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Evaluating ),( ytf  at ( )htt n +=  (i.e., ht = ) and ( )nn yyy +=   (i.e., 

nfhy = ) gives 

 

( ) ( )  ( ) ( ) ( )20, hffhfhfyyhtf
nynntnnnn +++=++     …………   (30) 

 

Substituting this result into Eq. (28) and collecting terms yields 

 

( ) ( ) ( )3

22

2

211 0 hffCfChfhCCyy
nynntnnn +++++=+     ……...   (31) 

 

The four free parameters,  and,,, 21 CC  can be determined by requiring Eq. (31) to 

match the Taylor series for )(ty  through second-order terms. That series is 

 

......
2

1 2

1 +++=+ hyhyyy
nnnn    …………………………………………   (32) 

 

( ) nnnn
fytfy == ,   ………………………………………………………   (33) 

 

( ) ......++===

=

nnynt

n
n

n
n

yff
dt

fd
fyy    ……………...……...   (34) 

 

Substituting Eqs. (34) and (33) into Eq. (32), where nn
fy = , gives 

 

( ) ( )32

1 0
2

1
hfffhfhyy

nynntnnn ++++=+    …………………………..   (35) 

 

Equating Eqs. (31) and (35) term by term gives 

 

    

  …………………………..….   (36) 

 

 

There are an infinite number of possibilities. Letting 
2

1
1 =C  gives 

2

1
2 =C , 1= , and 

1= , which yields the modified Euler FDEs. Thus, 

 

( ) nnn fhytfhy == ,1    ……………………………………………….   (37) 

 

( ) 1112 , +++ == nnn fhytfhy    ………………………………………….   (38) 

 

2

1

2

1
1 2121 ===+ CCCC   
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( )1211
22

1

2

1
++ ++=++= nnnnn ff

h
yyyyy    ………………………   (39) 

 

Letting 01 =C  gives 12 =C , 
2

1
= , and 

2

1
= , which yields the modified midpoint 

FDEs. Thus, 

 

( ) nnn fhytfhy == ,1    …………………………………….………….   (40) 

2/1
1

2
2

,
2

+=






 
++= nnn fh

y
y

h
tfhy    ……………………………….   (41) 

( ) ( ) 2/1211 10 ++ +=++= nnnn fhyyyyy    …………………………….   (42) 

 

 

Other methods result for other choices for C1 and C2. 

In the general literature, Runge-Kutta formulas frequently denote the syi '  by k's 

(i=1,2,……). Thus, the second order Runge-Kutta FDEs which are identical to the modified 

Euler FDEs, Eqs. (37) to (39), are given by 

 

( )211
2

1
kkyy nn ++=+    ……………………….………………………….   (43) 

 

( ) nnn fhytfhk == ,1    …………………………………….…………….   (44) 

 

 

( ) 112 , +=++= nnn fhkyttfhk    …………………………………..….   (45) 
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The Fourth Order Runge-Kutta Method 
 

Runge-Kutta methods of higher order have been devised. One of the most popular is the 

following fourth-order method: 

 

 

   ..……………   (46) 

 

 

 

( ) 






 
++==

2
,

2
, 1

21

y
y

h
tfhyytfhy nnnn    ….…   (47.a) 

 

( )34
2

3 ,
2

,
2

yyhtfhy
y

y
h

tfhy nnnn ++=






 
++=    …..…   (47.b) 

 

 

To perform a consistency and order analysis and a stability analysis of the fourth order Runge-

Kutta method, Eqs. (46) and (47) must be applied to the model ODE, 0=+ yy  , for 

which yytf −=),( , and the results must be combined into a single-step FDE. Thus, 

 

   

 

( ) ( ) ( ) nnnn yhyhytfhy  −=−== ,1    ………………………….……   (48) 

 

( )  















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
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

 
++= nnnn yhyh
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y

h
tfhy 

2

1

2
,

2

1
2    …….…   (49.a) 

 

( )
( )









−−=

2
12

h
yhy n


    ………………………………………….…   (49.b) 
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
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1

2

1

2
,

2

2
3

h
yhyh

y
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h
tfhy nnnn


 …(50.a) 

 

( )
( ) ( )









+−−=

42
1

2

3

hh
yhy n


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( )43211 22
6
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Substituting Eqs. (48), (49.b), (50.b), and (51.b) into Eq. (46) yields the single-step FDE 

corresponding to Eqs. (46) and (47): 

 

( ) ( ) ( ) ( ) nnnnnn yhyhyhyhyy
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1
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In summary, the fourth order Runge-Kutta FDEs have the following characteristics: 

 

1. The FDEs are an explicit predictor-corrector set of FDEs which requires two 

derivatives function evaluations per step. 

2. The FDEs are consistent, ( )50 t  locally and ( )40 t  globally. 

3. The FDEs are conditionally stable (i.e., 875.2t ). 

4. The FDEs are consistent and conditionally stable, and thus, convergent. 

 

algorithms based on the repetitive application of Runge-Kutta FDEs are called Runge-Kutta 

methods. 

 

 

 

Example: The fourth order Runge-Kutta method 

 

To illustrate the forth-order Runge-Kutta method, let's solve the radiation problem using Eq. 

(46) and (47). The derivative function is ( )44),( aTTTtf −−=  . Equations (46) and (47) 

yield 

 

( )43211 22
6

1
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Let st 0.2= . For the first time step, 
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These results, the results for subsequent time steps for t = 4.0s to 10.0s, and the solution for 

∆t = 1.0s are presented in the next table. 
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The error at t =10.0s for ∆t = 1.0s is approximately 110,000 times smaller than the error 

presented for the first-order explicit Euler method and 3,500 smaller than the error presented 

for the solution by the modified Euler method. Results such as these clearly demonstrates the 

advantages of higher-order methods. An error analysis at t =10.0s gives  

 

( )
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01.34
000260369.0

008855569.0

0.1

0.2
Ratio =
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−
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=
=

tE

tE
  

 

which demonstrates that the method is fourth order since the theoretical error ratio for an 

( )40 t  method is 16.0. 

 

 

 

 

 

 

 

 

Solution by the Fourth Order Runge-Kutta Method 
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Higher-order ordinary differential equations 
 

Many applications in engineering and science are governed by higher-order ODEs. In 

general, a higher-order ODE can be replaced by a system of first-order ODEs. When a system 

of higher-order ODEs is involved, each individual higher-order ODE can be replaced by a 

system of first-order ODEs, and the coupled system of higher-order ODEs can be replaced by 

coupled system of first-order ODEs. The systems of the first-order ODEs can be solved as will 

be described later. 

Consider the second-order initial value ODE developed for the vertical flight of a rocket, and 

simpler model given earlier 
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   ……………………….   (1) 

 

0.0)0.0()0.0(and0.0)0.0( ===−

−

=
•

Vyyg

tmM

F
y

o

   ……….   (2) 

 

Equations (1) and (2) both can be reduced to a system of two coupled initial-value ODEs by 

the procedure described below. 

 

Consider the general n
th
-order ODE: 

 
( )( )1)( ,...,,,, −= nn yyyytfy    ……………………………………………   (3) 

( ) ( )( ) ( ) ( )1,...,2,1and 0000 −=== niytyyty ii
   ……………….   (4) 

 

Equation (3) can be replaced by an equivalent system of n coupled first-order ODEs by 

defining n auxiliary variable. Thus, 
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   ………………………………………………   (5.1-5.n) 

Differentiating Eq. (5.n) gives 

 

( )n

n yy =    ………………………………………………………………..…   (6) 
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Rearranging Eqs. (5.2) to (5.n) and substituting these results and Eq. (6) into Eq. (3) yields 

the following system of n coupled first-order ODEs: 
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   ……………….……   (7.1-7.n) 

 

where Eq.(7.n) is the original n
th
-order ODE, Eq. (3), expressed in terms of the auxiliary 

variables ( )niyi ,...,2,1= . 

The result is a system of n coupled first-order ODEs. This reduction can nearly always be 

done. Thus, the general features of a higher-order ODE are similar to the general features of 

a first-order ODE. 

 

 

Example: Reduction of a second-order ODE to two coupled first-order ODEs 

 

To illustrate the reduction of a higher-order ODE to a system of coupled first-order ODEs, 

let's reduce Eq. (2) to a system of two coupled first-order ODEs. 
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   ……….   (8) 

 

Let Vy = . Then Eq. (8) reduces to the following pair of coupled first-order ODEs: 

 

( ) 0.00.0 == yVy    ……………………………………..…   (9) 
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= Vg
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F
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o


   ………………………………………   (10) 

 

Equations (9) and (10) comprise a system of two coupled first-order ODEs for y(t) and V(t). 

And this system will be solved later in this chapter. 
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Systems of first-order ordinary differential equations 
 

In many applications in engineering and science, systems of coupled first-order ODEs 

governing several dependent variables arise. The methods for solving a single first-order ODE 

can be used to solve systems of coupled first-order ODEs. 

 

Consider the system of n coupled first-order ODEs: 

 

( ) ( )niyyytfy nii ,...,2,1,...,,, 21 ==    …………………………..   (1) 

 

( ) ( )niYy ii ,...,2,10.0 ==    …………..…………………………..   (2) 

 

Each ODE in the system of ODEs can be solved by any of the methods developed for solving 

single ODEs. Care must be taken to ensure the proper coupling of the solutions. When 

predictor-corrector or multistep methods are used, each step must be applied to all the 

equations before proceeding to the next step. The step size must be the same for all the 

equations.  

 

 

Example: Solution of two coupled first-order ODEs 

     

Consider the system of two coupled linear fist-order initial-value ODEs develop in the last 

example for the vertical motion of a rocket: 

 

( ) 0.00.0 == yVy    ……………………………………..…   (3) 
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Where 0M  is the initial mass, m  is the mass explosion rate, and g is the acceleration of 

gravity. The exact solution of Eq.(4) is  
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Substituting Eq.(5) into Eq.(3) and integrating yields the exact solution of Eq.(3): 
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As an example, let 
2

0 m/s8.9,kg/s0.5,kg0.100,N000,10 ==== gandmMT  .  

Equations (3) and (4) become 

  

( ) 0.0)0.0(,, === yVVytfy    ……………………   (7) 

 

( ) 0.0)0.0(8.9
0.50.100

0.000,10
,, =−

−
== V

t
VytgV    ……………………   (8) 

 

Equations (5) and (6) become 

 

 

( ) tttV 8.905.01ln1000)( −−−=    ……………………………………………   (9) 

 

( ) ( ) 29.4200005.01ln05.01000,10)( ttttty −−−−=    ………………………   (10) 

 

Let's solve this problem by the fourth order Runge-Kutta method, for )0.10(V and )0.10(y  

with s0.1=t . Let ( )4,3,2,1= iyi  denote the increment in y(t) and ( )4,3,2,1= iVi  

denote the increments in V(t). Thus, 
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where ( )4,3,2,1= iyi  and ( )4,3,2,1= iVi  are given by 
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Due to the coupling, 11 and Vy   both must be computed before 22 and Vy   can be 

computed, and 22 and Vy   must be computed before 33 and Vy   can be computed, etc. 

The derivative functions, ( ) ( )VytgandVytf ,,,,  are given by Eqs. (7)  and (8), 

respectively. Thus, Eq. (13) reduces to 
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Let s0.1=t . For the first time step, 
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Substituting these results into Eqs. (11) and (12) gives 

 

( )( ) m854386.46463158.95731579.47100000.4520.0
6

1
0.01 =++++=+ny     

( )( ) m/s560624.95311111.101463158.95463158.952200000.90
6

1
0.01 =++++=+nV     

These results and the results for the subsequent time steps for s0.10to0.2=t are presented 

in the following table. 
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Unit-7: Boundary Value Problem 
 

Introduction 
A classic example of a boundary-value ODE is the general second-order ODE: 

 

2211 )()()(),(),( yxyandyxyxFyyxQyyxPy ===++  

 

This equation applies to many problems in engineering and science.  

 

Consider the constant cross-sectional area rod illustrated in the figure. Heat diffusion 

transfers energy along the rod and energy is transferred from the rod to the surroundings by 

convection. An energy balance on the differential control volume yields  
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which can be written as 
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which yields 
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Heat diffusion is governed by Fourier law of conduction, which states that 

 

dx

dT
kAxq −=

•

)(  

 

where )(xq
•

 is the energy transfer rate (J/s), k is the thermal conductivity of the solid (J/s-m-

K), A is the cross-sectional area of the rod (m
2
), and dT/dx is the temperature gradient (K/m). 

Heat transfer by convection is governed by Newton's law of cooling: 

 

)()( ac TThAxq −=
•

 

 

where h is the empirical heat transfer coefficient (J/s-m
2
-K), A is the surface area of the rod 

(A = P dx, m2), P is the perimeter of the rod (m), and Ta is the ambient temperature (K) (i.e., 

temperature of the surroundings). From the last three equations we can see that 
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For constant k, A, and P, the last equation yields 
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which can be written as 

 

aTTT 22  −=−    where   
kA

hP
=2  

 

which is a linear second-order boundary-value ODE. The solution of this equation is the 

function T(x), which describes the temperature distribution in the rod corresponding to the 

boundary conditions  
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Steady heat conduction in a rod 
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An example of a higher-order boundary-value ODE is given by the fourth-order ODE 

governing the deflection of a laterally loaded symmetrical beam. The physical system is 

illustrated in Figure (5.8). Bending takes place in the plane of symmetry, which causes 

deflections in the beam. The neutral axis of the beam is the axis along which the fibers do not 

undergo strain during bending. When no load is applied (i.e., neglecting the weight of the 

beam itself), the neutral axis is coincident with the x-axis. When a distributed load q(x) is 

applied, the beam deflects, and the neutral axis is displaced, as illustrated by the dashed line 

in Figure (II.8). The shape of the neutral axis is called the deflection curve. 

As shown in many strength of materials books (e.g. Timoshenko, 1955), the differential 

equation of the deflection curve is  

 

)()(
2

2

xM
dx

yd
xIE −=          

 

where E is the modulus of elasticity of the beam material, I(x) is the moment of inertia of the 

beam cross-section, which can vary along the length of the beam, and M(x) is the bending 

moment due to transverse forces on the beam, which can vary along the length of the beam. 

The moment M(x) is related to the shearing forces V(x) acting on each cross-section of the 

beam as follows: 
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xV
dx
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=  

 

The shearing forces V(x) is related to the distributed load q(x) as follows: 
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xq
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xdV
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Combining the three equations yields the differential equation for the beam deflection curve: 
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This equation requires four boundary conditions. For a horizontal beam of length L, 
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For a supported beam at both ends (any kind of rigid support): 

 

0.0)()0.0( == Lyy  

 

For a beam fixed (i.e., clamped) at both ends: 

 

0.0)()0.0( == Lyy  

 

For a beam pinned (i.e., hinged) at both ends: 

 

0.0)()0.0( == Lyy  

 

For a beam cantilevered (i.e., free) a either ends: 

 

0.0)(or0.0)0.0( == Lyy  

 

Any two combinations of these four boundary conditions can be specified at each end. 

 

The last equation is a linear example of the general nonlinear fourth-order boundary-value 

ODE: 

 

),,,,( yyyyxfy =  

 

which requires four boundary conditions at the boundaries of the closed physical domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deflection of a beam 
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The Equilibrium (Boundary-Value) Method 
 

The solution of boundary-value problems by the equilibrium (boundary-value) method is 

accomplished by the following steps: 

 

1. Discretizing the continuous solution domain into a discrete finite difference grid. 

2. Approximating the exact derivatives in the boundary-value ODE by algebraic finite 

difference approximations (FDAs). 

3. Substituting the FDAs into the ODE to obtain an algebraic finite difference equation 

(FDE). 

4. Solving the resulting system of algebraic FDEs. 

 

When the finite difference equation is applied at every point in the discrete finite difference 

grid, a system of coupled finite difference equations results, which must be solved 

simultaneously, thus relaxing the entire solution, including the boundary points, 

simultaneously.  

When solving boundary-value problems by the equilibrium method, consistency, order, 

and convergence of the solution method must considered. Stability is not an issue, since a 

relaxation procedure, not a marching procedure is employed. Consistency and order are 

determined by a Taylor series consistency analysis, which is discussed earlier for marching 

methods. The same procedure is applicable to relaxation methods. Convergence is guaranteed 

for consistent finite difference approximations of a boundary-value ODE, as long as the 

system of FDEs can be solved. In principle, this can always be accomplished by direct solution 

methods, such as Gauss elimination. 

 

 

The second-order boundary-value ODE  
 

Consider the linear, variable coefficient, second-order boundary-value problem with 

Dirichlet boundary conditions: 

 

( ) ( ) ( ) ( ) ( ) 2211 yxyandyxyxFyxQyxPy ===++    ………….…..   (1) 

 

The discrete finite difference grid for solving Eq. (1) by the equilibrium method is illustrated 

in the next figure. Recall the second order centered-difference approximations of 
i

y  and  
i

y   

at grid point i. 

 

( )211 0
2

x
x

yy
y ii

i
+



−
= −+

    …………………………………………………...   (2) 

( )2

2

11 0
2

x
x

yyy
y iii

i
+



+−
= −+

    ……………………………………………...   (3) 

 

Substituting Eqs. (2) and (3) into Eq. (1) and evaluating the coefficients P(x) and Q(x) at grid 

point i yields 
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( ) ( ) FiyQx
x

yy
Px

x

yyy
y ii

ii
i

iii

i
=+








+



−
++



+−
= −+−+ 2112

2

11 0
2

0
2

   ………….   (4) 

 

All the approximations in Eq. (4) are ( )20 x . Multiplying Eq. (4) through by 2x , gathering 

terms, and truncating the remainder terms yields: 

 

 ( ) iiiiiii FxyP
x

yQxyP
x 2

1

2

1
2

12
2

1 =






 
+++−+







 
− +−    …………...………   (5)  

 

Applying Eq. (5) at each point in a discrete finite difference grid yields a tridiagonal system 

of FDEs, which can be solved by the Thomas algorithm. 

 

 

  

 

 

 

 

 

 

 

Example: The second-order equilibrium method 

 

Let's solve the heat transfer problem by the second-order equilibrium method. The boundary-

value ODE is: 

 

( ) ( ) C0.1000.1andC0.00.022 ==−=− TTTTT a    …………..……   (6) 

 

Replacing the T   by the second order centered-difference approximation, Eq. (3), and 

evaluating all the terms at grid point i gives 

 

( ) ai
iii TTx

x

TTT 222

2

11 0
2

 −=−+


+− −+
    ……………………………………   (7) 

 

Multiplying through by
2x , gathering terms, and truncating the remainder term yield the 

FDE: 

 

( ) aiii TxTTxT 22

1

22

1 2 −=++− +−     ……………………………………...   (8) 

 

Let cm0.25xand,C0.0,cm0.16 22 === −

aT . Then Eq. (8) becomes  
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03 11 =+− +− iii TTT    …………………………………...……………………...   (9) 

 

Applying Eq. (9) at the three interior grid points, cm75.0and,5.0,25.0=x , gives 

 

0.1000.03:75.0

0.03:50.0

0.00.03:25.0

55543

432

11321

===+−=

=+−=

===+−=

TTTTTx

TTTx

TTTTTx

   …………………   (10.a-c) 

 

Transferring T1 and T5 to the right-hand side of Eqs. (10.a) and (10.c), respectively, yields the 

following tridiagonal system of FDEs: 

 

















−

=

































−

−

−

0.100

0.0

0.0

0.30.10.0

0.10.30.1

0.00.10.3

4

3

2

T

T

T

    ……………………………………   (11) 

 

Solving Eq. (11) by the Thomas algorithm yields the results presented in the next table. The 

exact solution and the errors are presented for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let's repeat the solution for cm125.0=x . In this case Eq. (8) becomes 

 

025.2 11 =+− +− iii TTT    ……..………………………...………………….....   (12) 

 

Applying Eq. (12) at the seven interior grid points gives 
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0.1000.025.2:875.0

0.025.2:750.0

0.025.2:625.0

0.025.2:500.0

0.025.2:375.0

0.025.2:250.0

0.00.025.2:125.0

99987

876

765

654

543

432

11321

===+−=

=+−=

=+−=

=+−=

=+−=

=+−=

===+−=

TTTTTx

TTTx

TTTx

TTTx

TTTx

TTTx

TTTTTx

   ..……………   (13.a-g) 

 

Transferring T1 and T9 to the right-hand sides of Eqs. (13.a) and (13.g), respectively, yields a 

tridiagonal system of equations. That tridiagonal system of equations is solved by the Thomas 

algorithm in Chapter 2. The results are presented in the next table. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The Euclidean norm of the errors for cm25.0=x  is 1.766412 C. The Euclidean norm of the 

errors for cm125.0=x  at the three common grid points is 0.468057 C. The ratio of the 

norms is 3.77. The ratios of the individual errors at the three common points in the two grids 

are 3.83, 3.80, and 3.75. Both results demonstrate that the method is second order. 

The errors of the second-order equilibrium method are about 40 percent of the magnitude of 

the errors of the second order shooting method. The errors in both cases can be decreased by 

using a smaller step size or a higher-order method. The errors are illustrated in the next 

figure, which also presents the errors of the compact three-point fourth-order equilibrium 

method presented later, as well as the errors from extrapolation of the second-order method, 

which is presented later also. For the fourth-order method, the Euclidean norms of the errors 

at the three common grid points in the two grids are 0.092448 C and 0.005919 C, respectively. 

The ratio of the norms is 15.62, which demonstrates the fourth-order behavior of the method. 
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Extrapolation  
 

The second-order results obtained in the last example by the equilibrium method can be 

extrapolated by the same procedure presented for the shooting method. 

 

 

Example: The second-order equilibrium method by extrapolation 

 

Let's apply extrapolation to the results obtained in the last example. Those results were 

presented in the last two tables. The results at the three common grid points in the two grids 

are summarized in the next table. For these results, R= 0.25/0.125 =2.0. 

 

( )
3

LAV-MAV4
LAV-MAV

12

1
MAVIV

2
=

−
+=  

 

The results obtained by applying the above equation is also presented in the next table and 

the last figure. The Euclidean norm of these errors is 0.035514 C, which is 13.18 times smaller 

than the Euclidean norm of the errors of the second-order equilibrium method without 

extrapolation. 
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Higher-order boundary-value ODEs 
 

Consider the general nonlinear fourth-order boundary-value problem 

 

( )yyyyxfy = ,,,,     ……………………….………………………..   (1) 

 

Eq. (1) is fourth-order, four boundary conditions are required. At least one boundary 

condition must be specified on each boundary of the closed solution domain. The two 

remaining boundary conditions can be specified on the same boundary, or one on each 

boundary. These boundary conditions can depend     on yyyy  or,,, . 

A finite difference approximation (FDA) must be developed for every derivative in Eq. (1). All 

the FDAs should be the same order. Second-order centered-difference FDAs can be developed 

for all four derivatives in Eq. (1). The first and second derivatives involve three grid points, 

points i-1 to i+1. The third and fourth derivatives involve five grid points, points i-2 to i+2. 

Consequently, the resulting finite difference equation (FDE) involves five grid points. 

Applying this FDE at each point in a finite difference grid yields a penta-diagonal system of 

FDEs, which can be solved by an algorithm similar to the Thomas algorithm for tridiagonal 

system of FDEs. 

   

Example: A fourth-order ODE by the second-order equilibrium method 

 

Let's solve the deflection problem for a laterally loaded symmetrical beam, expressed in the 

form of  

 

)(

)(

xEI

xq
y =    ……………………………………………………………   (2) 

 

where E is the modulus of elasticity of the beam material, I(x) is the moment of inertia of the 

beam cross section. And q(x) is the distributed load on the beam. Let's consider a rectangular 

cross section beam, for which 12/3whI = , where w is the width of the beam and h is the 

height of the beam, and a uniform distributed load q(x) = q = constant. 
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The ends of the beam are at the same elevation, which can be chosen as y= 0.0. Thus, 

0.0)()0.0( == Lyy , where L is the length of the beam. One additional boundary condition 

is required at each end of the beam. If the beam is fixed, then y  is specified. If the beam is 

pinned (i.e., clamped), then 0.0=y . If the beam is free (i.e. cantilevered), then 

0.0=y . Let's assume that both ends of the beam are pinned. Thus, 

0.0)()0.0( == Lyy . 

Thus, the problem to be solved, including the boundary conditions, is given by  

 

0.0)()()0.0()0.0( ===== LyLyyy
EI

q
y    …………………..   (3) 

 

The exact solution of Eq. (3) is 

 

( )
EI

xqL

EI

qLx

EI

qx
xy

241224

334

+−=    ……………………………………………   (4) 

 

As an example, let andcm,0.10,cm0.5,m0.5,N/m0.2000 ===−= hwLq  
29 N/m1090=E . Then Eqs. (3) and (4) become 

 

0.0)0.5()0.5()0.0()0.0(0024.0 ====−= yyyyy   ……..………..   (5) 

( ) xxxxy 012500.0001000.0000100.0 34 +−=    …………………………   (6) 

Let's solve this problem using a second order centered-difference approximation for y  . 

Write Taylor series for 21 and  ii yy  with base point i : 

 

( ) ( ) ...
720

1

120

1

24

1

6

1

2

1

65

432

1

+

++=

xyxy

xyxyxyxyyy

i

vi

i

v

iiiiii

   …………………….   (7) 

 

( ) ( ) ...
720

64

120

32

24

16

6

8

2

4
2

65

432

2

+

++=

xyxy

xyxyxyxyyy

i

vi

i

v

iiiiii

   …………………….   (8) 

 

Adding 11 and −+ ii yy  gives 

 

( ) ( ) ...
720

2

24

2

2

2
2 642

11 +++=+ −+ xyxyxyyyy
i

vi

iiiii    ………..…….   (9) 

 

Adding 22 and −+ ii yy  gives 
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( ) ( ) ...
720

128

24

32

2

8
2 642

22 +++=+ −+ xyxyxyyyy
i

vi

iiiii    …………....   (10) 

 

Subtracting ( ) ( )2211 from4 −+−+ ++ iiii yyyy  yields 

 

( ) ( ) ( ) ...
6

1
64 64

1122 ++=+−+ −+−+ xyxyyyyyy
i

vi

iiiiii    ……………….   (11) 

 

Solving Eq. (11) for 
i

y   yields 

 

( )( ) 2

4

2112

6

1464
xy

x

yyyyy
y viiiiii

i
−



+−+−
= ++−−     ……………………….   (12) 

 

where 22 +−  ii xx  . Truncating the remainder term yields a second order centered-

difference approximation for 
i

y  : 

 

4

2112 464

x

yyyyy
y iiiii

i 

+−+−
= ++−−

   ……………………………….…….   (13) 

 

Substituting Eq. (13) into Eq. (5) yields 

 
4

2112 0024.0464 xyyyyy iiiii −=+−+− ++−−    …………………..…….   (14) 

 

Let m0.1=x . Applying Eq. (14) at the four interior points illustrated in the next figure 

gives 

 

0024.0464:0.4

0024.0464:0.3

0024.0464:0.2

0024.0464:0.1

6543

65432

54321

4321

−=+−+−=

−=+−+−=

−=+−+−=

−=+−+−=

B

A

yyyyyx

yyyyyx

yyyyyx

yyyyyx

    ………………….   (15.a-d) 

 

Note that 1y  in Eq. (15.a-b) and 6y  in Eq. (15.c-d) are zero. Grid points A and B are outside 

the physical domain. Thus, Ay  and  By  are unknown. These values are determined by 

applying the boundary conditions ( ) ( ) 0.00.0 == Lyy . Applying the second derivative 

FDA formula at grid points 1 and 6 gives 
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0.0
2

0.0
2

2

56

6

2

12

1

=


+−
=

=


+−
=

x

yyy
y

x

yyy
y

B

A

    ………………………………………..…   (16.a-b) 

 

Solving Eq. (16) for Ay  and  By , with 1y = 6y = 0.0, gives 

 

5B2 and yyyyA −=−=    ………………………..………………….   (17) 

 

 

 

 

 

 

 

 

 

 

Substituting these values into Eqs. (15.a) and (15.d), respectively, and rearranging those two 

equations yields the following system equation: 

 

0024.054

0024.0464

0024.0464

0024.045

543

5432

5432

432

−=+−

−=−+−

−=+−+−

−=+−

yyy

yyyy

yyyy

yyy

   ……………………………………   (18.a-d) 

 

Expressing Eq. (18) in matrix form yields  

 



















−

−

−

−

=





































−

−−

−−

−

0024.0

0024.0

0024.0

0024.0

5410

4641

1464

0145

5

4

3

2

y

y

y

y

   ……………………..…………..   (19) 

 

Although it is not readily apparent, Eq. (19) is a penta-diagonal matrix, which can be solved 

very efficiently by a modified Gauss elimination algorithm similar to the Thomas algorithm 

for tridiagonal matrices. Solving Eq. (19) yields the presented in the next table. The exact 

solution and the errors are presented for comparison. 
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Let's repeat the solution for m5.0=x . In this case, Eq. (19) becomes 

 



































=





































































−

−−

−−

−−

−−

−−

−−

−−

−

000150.0

000150.0

000150.0

000150.0

000150.0

000150.0

000150.0

000150.0

000150.0

541000000

464100000

146410000

014641000

001464100

000146410

000014641

000001464

000000145

10

9

8

7

6

5

4

3

2

y

y

y

y

y

y

y

y

y

   …..……..   (20) 

 

The penta-diagonal structure of Eq. (20) is readily apparent. Solving Eq. (20) yields the results 

presented in the next table. 

The Euclidean norm of the errors for m0.1=x  is 0.123456 m. The Euclidean norm of the 

errors for m5.0=x  at the four common grid points is 0.012345 m. the ratio of the norms 

is 3.99. The ratios of the individual errors at the four common grid points in the two grids are 

3.96, 3.97, 3.98, and 3.99. Both results demonstrate that the method is second order. 

 

  

 

 

 

 

 

 

 

 

 



Numerical Analysis                                                                                  Unit-7: Boundary Value Problem 
___________________________________________________________________________  

Page 16 of 24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Numerical Analysis                                                                                  Unit-7: Boundary Value Problem 
___________________________________________________________________________  

Page 17 of 24 
 

Applications of FDM to determinate beams 
 

Since moments in the determinate beams can be obtained by equilibrium method the following 

differential equation may be used: 

 

EI

M

dx

yd
=

2

2

 

 

In numerical representation 

 

( )
EI

M
y

h
i =









2

1
 

 

by using this stencil, the deflection of beam can be found at selected nodes. 

 

 

 

Example: For the beam shown in the figure, find the deflection at nodes. Take h = 1 m. 

 

Solution: 

 

( )

( ) 2
2

2

530
2

)(10

2

610

22

xx
x

x

xw
x

Lw
M

−=−


=

−=

 

 

( ) ( ) 22

11 .530
1

2 hxx
EI

yyy iiiii −=+− +−  

 

EI
yyy

EI
yyy

EI
yyy

EI
yyy

EI
yyy

25
2

40
2

45
2

40
2

25
2

765

654

543

432

321

=+−

=+−

=+−

=+−

=+−

    

 

 

 

 -

2 

1 1 

 
 

w=10 kN/m 

6 m 

7 6 5 4 3 2 1 

Five Eqs but 7 unknowns then we need 2 

boundary conditions: 

 

y1 = 0   and    y7 = 0 
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Solving the system of linear algebraic equations yields 

 



























−=



























5.87

150

5.172

150

5.87

1

6

5

4

3

2

EI

y

y

y

y

y

 

 

 

Exact solution: 

 

xxxyEI

cyxat

cyxatcxcxxyEI

dx

yd
EIxxM

90
12

5
5.

9006

000
12

5
5.

530

43

1

221

43

2

2
2

−−=

−===

===++−=

=−=

 

 

 

x (m) y (Analytically) y (Numerically) 

1 -85.42/EI -87.5/EI 

2 -146.67/EI -150/EI 

3 -168.75/EI -172.5/EI 

4 -146.67/EI -150/EI 

5 -85.42/EI -87.5/EI 

 

The difference in maximum deflection is %2.2%100
75.168

75.1685.172
=

−
 

 

Q- If h = 0.5 m then the difference will be small?! 
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Applications of FDM to indeterminate beams 

 

For the indeterminate beams, the moments are unknowns, so the differential equation which 

is applicable will be: 

 

W
dx

yd
EI =

4

4

  

 

The stencil representation is: - 

 

( )
EI

Wh
yi

4

=








 

 

 

Example: Find the deflection curve for the beam shown in the Fig below using h=L/5 ? 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

( )
EI

Wh
yyyyy iiiii

4

2112 464 =+−+− ++−−  

EI

Wh
yyyyy

EI

Wh
yyyyy

EI

Wh
yyyyy

EI

Wh
yyyyy

4

65432

4

54321

4

43210

4

32101

464:4@

464:3@

464:2@

464:1@

=+−+−

=+−+−

=+−+−

=+−+−−

 

 

4-equations with 8-unknowns → 4-boundary conditions needed: 

1 1  6 -

4 

-

4 

W 

L 

5 4 3 2 1 0 6 -

1 

 

Imaginary 
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Boundary Conditions: 

 

642

654

2

2

11
11

5

0

0
2

05point at.4

0
2

00point at.3

0.2

0.1

yy
h

yyy

dx

yd
EIM

yy
h

yy

dx

dy

y

y

−==
+−

==

==
−

==

=

=

−
−

 

 

If we substituted these 4-BC's into the above equations we get: 

 

EI

WL

y

y

y

y

48

0768.0

0768.0

0768.0

0768.0

5410

4641

1464

0147

4

4

3

2

1



















=





































−

−−

−−

−

 

 

Solving the system yields: 

 

EI

WL

y

y

y

y

48

2032914.0

2981647.0

2529882.0

1129412.0

4

4

3

2

1



















=



















 

The exact solution is: 

 




















+








−








=

2344

352
48 L

x

L

x

L

x

EI

WL
y  

 

Substituting LLLLx 8.0,6.0,4.0,2.0=  gives: 

 

EI

WL

y

y

y

y

48

1792.0

2592.0

2112.0

0832.0

4

4

3

2

1



















=



















   The Error ranging from 15-30 % 

 

If 10 divisions (x=0.1L) is chosen, then the numerical solution is: 
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 EI

WL

y

y

y

y

EI

WL

y

y

y

y

y

48

100477.0

185266.0

243475.0

269015.0

48

260597.0

221731.0

1607284.0

0906985.0

029552.0

4

9

8

7

6

4

5

4

3

2

1



















=









































=























 

 

In this case the Max. Error is 9% 
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Approximate Eigenproblems 
   

Eigenvalues of homogenous boundary-value problems can also be obtained by numerical 

methods. In this approach, the boundary-value ODE is approximated by a system of finite 

difference equations, and the values of the unknown parameter (i.e., eigenvalues) which satisfy 

the system of FDEs are determined. These values are approximations of the exact eigenvalues 

of the boundary-value problem. 

 

 

Example: Approximation of eigenvalues by the equilibrium method. 

 

Let's solve Eq. (1) for its eigenvalues by the finite difference method. Choose an equally spaced 

grid with four interior points, as illustrated in the next figure. Approximate y   with the 

second order centered-difference approximation. The corresponding finite difference 

equation is: 

 

( ) 00
2 22

2

11 =++


+− −+
i

iii ykx
x

yyy
   ………………………………………   (7) 

 

Multiplying by
2x , truncating the remainder term, and rearranging gives the FDE: 

 

( ) 02 1

22

1 =+−− +− iii yykxy    ………………………………………….   (8) 

 

 

 

 

 

 

 

 

 

Apply the FDE, with 2.0=x , at the four interior points: 

 

( )
( )
( )
( ) 0004.02:8.0

004.02:6.0

004.02:4.0

0004.02:2.0

665

2

4

54

2

3

43

2

2

132

2

1

==+−−=

=+−−=

=+−−=

==+−−=

yyykyx

yykyx

yykyx

yyykyx

    ………………….   (9.a-d) 

 

Writing Eq. (9) in matrix form gives 
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( )
( )

( )
( )

  0

04.02100

104.0210

0104.021

00104.02

2

2

2

2

=





















−−

−−−

−−−

−−

iy

k

k

k

k

  …...……….   (10) 

 

Which can be expressed as 

 

( ) 0IA =− yλ    ………………………………………………………..   (11) 

 

where 
204.0 k=  and A is defined as 

 



















−

−−

−−

−

=

2100

1210

0121

0012

A    ………………………………………………….   (12) 

 

This is a classical eigenproblem. The characteristic equation is given by 

 

( ) 0IAdet =− λ    ……………………………………………………….   (13) 

 

Define ( )204.02 kZ −= . The characteristic equation is determined by expanding the 

determinant  0IA =− λ , which gives 

 

013 24 =+− ZZ    ………………………………………………………   (14) 

 

which is quadratic in 
2Z . Solving Eq. (14) by the quadratic formula yields 

 

( )  618.0618.104.02 2 =−= kZ    ……………………………..   (15) 

 

The values of ( )exact,, kkZ , and percent error are presented in the next table. 

The first eigenvalue is reasonably accurate. The higher-order eigenvalues become less 

and less accurate. To improve the accuracy of the eigenvalues and to obtain higher-order 

eigenvalues, more grid points are required. This is not without disadvantages, however. 

Expanding the determinant becomes more difficult and finding the zeros of the higher-order 

polynomials is more difficult.      
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